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1 Foreword

To continue the tradition of the previous brainstorming weeks on membrane computing, I am
collecting here a series of open problems and research topics, not about membrane computing
in general, but about one of the directions of research which were pretty much investigated
in the last year: spiking neural P systems. In general, one mentions issues which look of a
broader nature, but also some precise problems are formulated. As usual with such lists of
problems, the selection is subjective, by no means exhaustive.

Of course, choosing only problems related to spiking neural P systems does not mean
that there are no longer enough problems waiting to be solved in the general framework of
membrane computing – on contrarily (e.g., separate lists can refer to computational complex-
ity issues, to dynamical systems approaches, etc.), but such problems tend to become rather
specialized and technical at the present stage of the development of membrane computing.
Instead, the membrane computing models with a neural inspiration are at the beginning of
a systematic exploration, and, as claimed below, this area of research looks very promising.

2 Forecast

It is obvious that the (human) brain structure and functioning, from neurons, astrocytes,
and other components to complex networks and complex (chemical, electrical, informational)
processes taking place in it, should be – and only partially is – a major source of inspiration for
informatics (I choose this more general term rather that the restrictive, but usual, “computer
science”, in order to stress that I have in mind both mathematics per se and practice, both
the theory of computability and the use of computing machineries). If biology is such a
rich source of inspiration for informatics as natural computing proves, then the brain should
be the “golden mine” of this intellectual enterprise. Risking a forecast, I believe that if
something really great is to appear in informatics in the near future, then this “something”
will be suggested by the brain (and this will probably be placed at the level of “strategies” of
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computing, not at the “tactic” level – just in balance with the two computing devices already
learned from the brain activity and which can be considered the most central notions in
informatics, the Turing machine and the finite automaton).

The previous statements do not intend to suggest that spiking neural P systems are the
answer to this learning-from-brain challenge, but only to call (once again) the attention to this
challenge. Becoming familiar with brain functioning, in whatever reductionistic framework
(as spiking neural P systems investigation is), can however be useful. After all, “the road
of one thousand miles starts with the first step”, Lao Tze said. . . Let us make from spiking
neural P systems “the first step”.

3 Some (Neural) Generalities

The neuron is a highly specialized cell, at the same time intricate and simple, robust and
fragile, like any other cell, but having the particularity of being involved (in general) in huge
networks by means of the synapses established with partner neurons. It is not at all the
intention of these lines to give any biological information from this area, but only to point
out some of the peculiarities related to neurons and the brain: the functioning of each neuron
assumes chemical, electrical, and informational processing at the same time; the axon is
not a simple transmitter of impulses, but an information processor; in the communication
between neurons the spiking activity plays a central role (which means that the distance in
time between consecutive spikes is used to carry information, that is, time is a support of
information); the neurons are not cooperating only through synapses, but their relationships
are also regulated through the calcium waves controlled by the astrocytes, “eavesdroppers”
of axons playing an important role in the neural communication; the brain displays a general
emergent behavior which, to my knowledge and to my understanding, cannot be explained
only in terms of neuron interrelationships (something is still missing in this picture, maybe of
a quantum nature – as Penrose suggests, maybe related to the organization of parts, maybe of
a still subtler or even unknown nature). Some of these ideas (especially spiking) are supposed
to lead to “neural computing of the third generation”, which suggests that already computer
scientists are aware of the possibility of major progresses to be made (soon) on the basis of
progresses in neuro-biology.

The bibliography of this note contains several titles, both from the general biology of the
cell [1], general neurology [40], and from neural computing based on spiking [3], [28], [16],
[25], [26], [27], about the axon as an information processor [38], astrocytes and their role in
the brain functioning [36], [39]. Of course, these titles are only meant to be initial “dendrites”
to the huge bibliography related to (computer science approaches to) brain functioning.

4 Spiking Neural P Systems – Informal Presentation

Spiking neural P systems (SN P systems, for short) were introduced in [23] in the precise
(and modest: trying to learn a new “mathematical game” from neurology, not to provide
models to it) aim of incorporating in membrane computing ideas specific to spiking neurons;
the intuitive goal was to have (1) a tissue-like P system with (2) only one (type of) object(s)
in the cells – the spike, with (3) specific rules for evolving populations of spikes, and (4)
making use of the time as a support of information.
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In what follows, I briefly describe several classes of SN P systems investigated so far, as
well as some of the main types of results obtained in this area.

In short, an SN P system (of the basic form – later called a standard SN P system) consists
of a set of neurons placed in the nodes of a directed graph and sending signals (spikes, denoted
in what follows by the symbol a) along the arcs of the graph (they are called synapses). The
objects evolve by means of spiking rules, which are of the form E/ac → a; d, where E is a
regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is that
a neuron containing k spikes such that ak ∈ L(E), k ≥ c, can consume c spikes and produce
one spike, after a delay of d steps. This spike is sent to all neurons to which a synapse exists
outgoing from the neuron where the rule was applied. There also are forgetting rules, of the
form as → λ, with the meaning that s ≥ 1 spikes are removed, provided that the neuron
contains exactly s spikes.

An extension of theses type of rules was considered (with a mathematical motivation)
in [29], [14]: rules of the form E/ac → ap; d, with the meaning that when using the rule, c
spikes are consumed and p spikes are produced (one assumes that c ≥ p, not to produce more
than consuming). Because p can be 0 or greater than 0, we obtain a generalization of both
spiking and forgetting rules, while forgetting rules also have a regular expression associated
with them.

An SN P system (with standard as well with extended rules) works in the following way.
A global clock is assumed and in each time unit each neuron which can use a rule should do it
(the system is synchronized), but the work of the system is sequential locally: only (at most)
one rule is used in each neuron. One of the neurons is considered to be the output neuron,
and its spikes are also sent to the environment. The moments of time when a spike is emitted
by the output neuron are marked with 1, the other moments are marked with 0. This binary
sequence is called the spike train of the system – it might be infinite if the computation does
not stop.

With a spike train we can associate various numbers, which can be considered as computed
(we also say generated) by an SN P system. For instance, in [23] only the distance between the
first two spikes of a spike train was considered, then in [32] several extensions were examined:
the distance between the first k spikes of a spike train, or the distances between all consecutive
spikes, taking into account all intervals or only intervals that alternate, all computations or
only halting computations, etc.

An SN P system can also work in the accepting mode: a neuron is designated as the input
neuron and two spikes are introduced in it, at an interval of n steps; the number n is accepted
if the computation halts.

Two main types of results were obtained: computational completeness in the case when
no bound was imposed on the number of spikes present in the system, and a characterization
of semilinear sets of numbers in the case when a bound was imposed.

Another attractive possibility is to consider the spike trains themselves as the result of
a computation, and then we obtain a device generating a (binary) language. We can also
consider input neurons and then an SN P system can work as a transducer. Such possibilities
were investigated in [33]. Languages – even on arbitrary (i.e., not only binary) alphabets –
can be obtained also in other ways: following the path of a designated spike across neurons,
as proposed in [12], or using rules of the extended form mentioned above. Specifically, with
a step when the system sends out i spikes, we associate a symbol bi, and thus we get a
language over an alphabet with as many symbols as the number of spikes simultaneously
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produced. This case was investigated in [14], where representations or characterizations of
various families of languages were obtained. (An essential difference was found between
the case when zero spikes sent out is interpreted as a symbol b0 and the case when this is
interpreted as inserting λ, the empty string, in the result.)

Other extensions were proposed in [20] and [19], where several output neurons were con-
sidered, thus producing vectors of numbers, not only numbers. A detailed typology of systems
(and of sets of vectors generated) is investigated in the two papers mentioned above, with
classes of vectors found in between the semilinear and the recursively enumerable ones.

The proofs of all computational completeness results known up to now in this area are
based on simulating register machines. Starting the proofs from small universal register
machines, as those produced in [21], one can find small universal SN P systems (working in
the generating mode, as sketched above, or in the computing mode, i.e., having both an input
and an output neuron and producing a number related to the input number). This idea was
explored in [29] and the results are as follows: there are universal computing SN P systems
with 84 neurons using standard rules and with only 49 neurons using extended rules. In the
generative case, the best results are 79 and 50 neurons, respectively.

In the initial definition of SN P systems several ingredients are used (delay, forgetting
rules), some of them of a general form (unrestricted synapse graph, unrestricted regular
expressions). As shown in [18], several normal forms can be found, in the sense that some
ingredients can be removed or simplified without losing the computational completeness. For
instance, the forgetting rules or the delay can be avoided, and the outdegree of the synapse
graph can be bounded by 2, while the regular expressions from firing rules can be of very
restricted forms. The dual problem, of the indegree bounding, was solved (affirmatively) in
[34].

Besides using the rules of a neuron in the sequential mode introduced above, it is possible
to also use the rules in a parallel way. A possibility was considered in [24]: when a rule is
enabled, it is used as many times as possible, thus exhausting the spikes it can consume in
that neuron. As proved in [24], SN P systems with the exhaustive use of rules are again
universal, both in the accepting and the generative cases.

In the proof of these results the synchronization plays a crucial role, but both from a
mathematical point of view and from a neuro-biological point of view it is rather natural to
consider non-synchronized systems, where the use of rules is not obligatory: even if a neuron
has a rule enabled in a given time unit, this rule is not obligatorily used, the neuron may
remain still, maybe receiving spikes from the neighboring neurons; if the unused rule may
be used later, it is used later, without any restriction on the interval when it has remained
unused; if the new spikes made the rule non-applicable, then the computation continues in
the new circumstances (maybe other rules are enabled now). This way of using the rules
applies also to the output neuron, hence now the distance in time between the spikes sent
out by the system is no longer relevant. That is why, for non-synchronized SN P systems we
take as a result of a computation the total number of spikes sent out; this, in turn, makes
necessary considering only halting computations (the computations never halting are ignored,
they provide no output). Non-synchronized SN P systems were introduced and investigated
in [7], where it is proved that SN P systems with extended rules are still equivalent with
Turing machines (as generators of sets of natural numbers).
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5 Some (More) Formal Definitions

To make clearer some of the subsequent formulations, I recall here the definition of central
classes of SN P systems, but more details should be found in the papers mentioned in the bib-
liography. No general notions or notations from language or automata theory, computability,
complexity, computer science in general, or membrane computing, are recalled.

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a construct of
the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;

b) Ri is a finite set of rules of the following general form:

E/ac → ap; d,

where E is a regular expression with a the only symbol used, c ≥ 1, and p, d ≥ 0,
with c ≥ p; if p = 0, then d = 0, too.

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);

4. out ∈ {1, 2, . . . , m} indicates the output neuron.

A rule E/ac → ap; d with p ≥ 1 is called a firing (we also say spiking) rule; a rule
E/ac → ap; d with p = d = 0 is written in the form E/ac → λ and is called a forgetting rule.
If L(E) = {ac}, then the rules are written in the simplified form ac → ap; d and ac → λ. A
system having only rules of the forms E/ac → a; d and ac → λ is said to be restricted (we
also use to say that such a system is a standard one).

The rules are applied as follows: if the neuron σi contains k spikes, ak ∈ L(E) and k ≥ c,
then the rule E/ac → ap; d ∈ Ri (with p ≥ 1) is enabled and it can be applied; applying it
means that c spikes are consumed, only k − c remain in the neuron, the neuron is fired, and
it produces p spikes after d time units. If d = 0, then the spikes are emitted immediately, if
d = 1, then the spikes are emitted in the next step, and so on. In the case d ≥ 1, if the rule
is used in step t, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed, and it cannot
receive new spikes (if a neuron has a synapse to a closed neuron and sends spikes along it,
then the spikes are lost). In step t+ d, the neuron spikes and becomes again open, hence can
receive spikes (which can be used in step t + d + 1). The p spikes emitted by a neuron σi are
replicated and they go to all neurons σj such that (i, j) ∈ syn (each σj receives p spikes).
If the rule is a forgetting one, hence with p = 0, then no spike is emitted (and the neuron
cannot be closed, because also d = 0).

In the synchronized mode, considered up to now in all SN P systems investigations except
[7], a global clock is assumed, marking the time for all neurons, and in each time unit, in
each neuron which can use a rule, a rule must be used. Because two rules E1/ac1 → ap1 ; d1

and E2/ac2 → ap2 ; d2 can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can
be applied in a neuron, and then one of them is chosen non-deterministically. Note that the
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neurons work in parallel (synchronously), but each neuron processes sequentially its spikes,
using only one rule in each time unit.

The initial configuration of the system is described by the numbers n1, n2, . . . , nm of spikes
present in each neuron. During the computation, a configuration is described by both the
number of spikes present in each neuron and by the state of the neuron, more precisely, by
the number of steps to count down until it becomes open (this number is zero if the neuron is
already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neuron σi, i = 1, 2, . . . , m
contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps; with this notation, the initial
configuration is C0 = 〈n1/0, . . . , nm/0〉 (see an example in Figure 2).

Using the rules as suggested above, we can define transitions among configurations. Any
sequence of transitions starting in the initial configuration is called a computation. A compu-
tation halts if it reaches a configuration where all neurons are open and no rule can be used.
With any computation, halting or not, we associate a spike train, a sequence of digits 0 and 1,
with 1 appearing in positions which indicate the steps when the output neuron sends spikes
out of the system (we also say that the system itself spikes at that time). With any spike
train we can associate various numbers, which are considered as computed (generated) by
the system; in the spirit of spiking neural computing, the distance between certain spikes are
usually taken as the result of a computation (e.g., the distance between the first two spikes).
Because of the non-determinism in using the rules, a given system computes in this way a
set of numbers. An SN P system can be also used in the accepting mode: a number n is
introduced in the system in the form of the distance between two spikes entering a specified
neuron, and this number is accepted if the computation eventually halts.

We denote by Ngen(Π) the set of numbers generated (in the synchronized way) by a
system Π in the form of the number of steps elapsed between the first two spikes of a spike
train. Then, by Spik2SPm(rulek, consp, forgq, deld) we denote the family of such sets of
numbers generated by systems with at most m neurons, each of them containing at most k
rules, all of them of the standard form, and each rule consuming at most p spikes, forgetting
at most q spikes, and having the delay at most d. When using extended SN P systems, we
use Spik2EPm(rulek, consp, prodq, deld) to denote the family of sets Ngen(Π) generated by
systems with at most m neurons, each of them containing at most k rules (of the extended
form), each spiking rule consuming at most p spikes, producing at most q spikes, and having
the delay at most d. When any of the parameters m, k, p, q, d is not bounded, it is replaced
by ∗. When using the rules in the exhausting or the non-synchronized mode, we write
N ex

gen(Π), Nnsyn
gen (Π), respectively, and the superscripts ex and nsyn are also added to Spik in

the families notation.
The notations should be changed when dealing with other sets of numbers than the

distance between the first two spikes, with accepting systems, when generating or accepting
languages, but I do not enter here into details. Instead, I close this section by introducing
two important tools in presenting SN P systems, namely, the graphical representation and
the transition diagram.

Figures 1, 2 are recalled from [9]. The graphical representation of an SN P system is
rather intuitive: the neurons are represented by membranes, placed in the nodes of a directed
graph whose arrows represent the synapses; an arrow also exits from the output neuron,
pointing to the environment; in each neuron we specify the rules and the spikes present in
the initial configuration.

Figure 1 represents the initial configuration of a system Π. We have three neurons,
labeled with 1, 2, 3, with neuron σ3 being the output one. Each neuron contains two rules,
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r21 : a → a; 0

r22 : a → a; 1
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r31 : a → a; 0

r32 : a2 → λ

Figure 1: The initial configuration of the SN P system Π

with neurons σ1 and σ2 having the same rules (firing rules which can be chosen in a non-
deterministic way, the difference between them being in the delay from firing to spiking), and
neuron σ3 having one firing and one forgetting rule. In the figure, the rules are labeled, and
these labels are useful below, in relation with Figure 2.

This figure can be used for analyzing the evolution of the system Π: because the system
is finite, the number of configurations reachable from the initial configuration is finite, too,
hence, we can place them in the nodes of a graph, and between two nodes/configurations we
draw an arrow if and only if a direct transition is possible between them. In Figure 2 there
are also indicated the rules used in each neuron, with the following conventions: for each rjk

we have written only the subscript jk, with 31 being written in bold face, in order to indicate
that a spike is sent out of the system at that step; when a neuron σj , j = 1, 2, 3 uses no rule,
we have written j0, and when it spikes (after being closed for one step), we write js.

The functioning of the system, both as a number generator and as a string generator, can
easily be followed on this diagram.

6 Open Problems and Research Topics

The following list of problems should be read with the standard precautions: it is not meant to
be exhaustive, there is no ordering of the problems (according to their significance/interest),
some problems are very general, others are much more particular, in many cases the formula-
tion is preliminary/informal and addressing the problem should start with a precise/suitable
formulation, in many cases related results exist in the literature, and so on. Most problems
are stated in a short way, with reference to the discussion from Section 4 and the definitions
from Section 5.

A. Let us start with a general and natural idea: linking the study of SN P systems with
neural computing. This can be a rich source of ideas, based on transferring from an area to the
other one research topics which make sense also in the destination framework. What means,
for instance, training (in general, learning, adaptation, evolving) in terms of SN P systems?
More elementary: what means solving a problem by using an SN P system, implicitly, what
means to solve a problem in a better way? Maybe the starting point should not be (only)
neural computing, which is already an abstract, specialized, reductionistic framework, but
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Figure 2: The transition diagram of system Π from Figure 1

(also) from neurology, from learning in the general psycho-pedagogical sense.

B. This problem is related to another general, natural, and important one: bringing
more ingredients from neurology. Just a few quick ideas: considering an energy associated
with firing/spiking; taking into considerations the antiport processes which are performed
in synapses; introducing circadian periodicity in the functioning of neurons and of nets of
neurons, with “tiredness”, “resting periods”, etc.

C. In particular, the recent discoveries related to the role of astrocytes in the functioning
of the brain need to be examined and formalized. Astrocytes are a class of cells that form
a supporting and insulating structure for the neurons, but also participate in the process
of communication between neurons. They “listen” the spikes passing along axons and ac-
cordingly regulate the release of neurotransmitters from the nerve terminals, thus relating
in an intricate way the functioning of different neighboring axons. The regulation is either
excitatory or inhibitory, and it is done by means of calcium waves. I refer to [36] and [39]
for further details – and further references. How can astrocytes be considered in an SN P
system and with what consequences?
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D. The neuron-astrocyte coupling is based on signaling pathways of a kind which reminds
the controlling pathways which were recently modeled and simulated in terms of P systems
in many papers, and this suggests the next general research challenge: applications (in neu-
rology). This is perhaps a too ambitious goal at this stage of the development of the study of
SN P systems and it is first necessary to have answers to the previous two problems, but it
is important to keep in mind the possibility of applications when devising new classes of SN
P systems. It is difficult to forecast which would be the most promising types of applications
– looking for conceptual clarifications, for analytical results, for computer experiments and
simulations, for all these intertwined? Of course, the cooperation with a biologist/neurologist
would be very important in this respect.

E. Making a step from neurobiology to mathematics, the problem appears to consider
systems using more than one type of spikes. At the first sight, this is against the spirit of
spiking neural computing, and can lead to standard membrane systems. Still, the question
makes sense in various setups. For instance, neurology deals both with excitatory and in-
hibitory impulses, both in neurons and at the level of astrocytes. How inhibitory spikes can
be defined and used?

F. Then, there are features of SN P systems which were not considered for general P
systems. Using a regular expression for enabling a rule looks like controlling the application
of rules by means of promoters, inhibitors, activators, but a notion of delay does not exits
in membrane computing. Can it be of any interest also for usual P systems? Then, defining
the result of a computation in a P system in terms of the time elapsed between two specified
events, in particular, sending a given object outside, was briefly investigated in [5], but this
issue deserves further research efforts.

G. Conversely, there are many ingredients of usual P systems which were not considered
for SN P systems and might make sense also in this area, at least at a mathematical level. Of
a particular interest can be tools to exponentially increase the working space in a polynomial
(if possible, even linear) time, for instance, by operations similar to cell division and cell
creation in P systems with active membranes. How new neurons can be created (added
to a system) in such a way to make possible polynomial solutions to computationally hard
(typically, NP-complete) problems? The brain is supposed to be a very efficient computing
device – how SN P systems can be made efficient from this point of view?

H. This touches a more general issue, that of considering SN P systems with a dynamical
structure. The dynamism can be achieved both in terms of neurons and synapses, or only
for synapses. From birth to maturity, the brain essentially evolves at the level of synapses,
learning means establishing new synapses, cutting them, making them more stable/fast when
used frequently, and so on and so forth. How this can be incorporated in SN P systems?
A related idea is to associate a duration to each synapse (which is not of interest when the
duration is constant), and to vary it in time, according to the intensity of using that synapse,
and this looks rather motivated from a learning point of view.

I. Making synapses to have a duration or a length, depending on their use, can be related
to a similar idea [8] at the level of spikes: considering a duration of life also for spikes, in
the form of a decaying constant associated with them (at the level of the whole system, or
locally, for each neuron). If a spike is not used a number of steps larger than the decaying
threshold, then it is removed (a sort of forgetting rules are thus implicitly acting, depending
on the age of each spike).
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J. Moving further to theoretical issues, let us consider an idea related both to “classic”
membrane computing and to the efficiency issue: using the rules in a parallel manner. This
has been already considered in [24], in the particular form of using the rules in the exhaustive
mode: if a neuron contains kn+ r spikes and has a rule E/an → a; d such that akn+r ∈ L(E)
and k ≥ 1, 0 ≤ r < n, then the rule is enabled and it is applied k times; kn spikes are
consumed, r remain unused, and k are produced. Besides continuing the research from
[24] (where it is only proved that SN P systems with an exhaustive use of rules are Turing
complete both in the generative and the accepting modes), several other problems remain
to be investigated. Actually, most problems usually considered for SN P systems with a
sequential use of rules can be formulated also for the exhaustive mode: generating or accepting
languages, translating strings of infinite sequences, looking for small universal systems, etc.

K. Then, the problem arises to consider other forms of parallelism, at the level of each
neuron or at the level of the whole system. What about using several rules at the same
time, in the same way as the rules of a usual P system are applied in the maximally parallel
manner? Variants inspired from grammar systems area can also be considered, thus obtaining
a bounded parallelism: at least k, at most k, exactly k rules to be used at a time. This last
idea can be transferred also at the level of neurons: in each step, only a prescribed number of
neurons, non-deterministically chosen, to be active. Finally, one can borrow to this area the
idea of minimal parallelism from [15]: when a neuron can use at least one rule, then at least
one must be used, without any restriction about how many. A significant non-determinism
is introduced in this way in the functioning of the system.

L. When the number of rules to be used in each neuron is “at least zero” (and this is
equivalent with making evolve “at least zero” neurons at a time), we get the rather natural
idea of a non-synchronized functioning of an SN P system. In such a case, in each time unit,
any neuron is free to use a rule or not.

I have described the functioning of such a system in the end of Section 4. I only recall
that, because now “the time does not matter”, the spike train can have arbitrarily many
occurrences of 0 between any two occurrences of 1, hence the result of a computation can
no longer be defined in terms of the steps between two consecutive spikes, but as the total
number of spikes sent into the environment by (or contained in) the output neuron. In this
way, only halting computations can be considered as successful.

In [7] it is proved that SN P systems with extended rules are Turing equivalent even
in the non-synchronized case, but the problem was left open whether this is true also for
systems using standard rules. The conjecture is that this does not happens, hence that
synchronization plays a crucial role in this case.

Similar to the exhaustive mode of using rules, also the non-synchronization can be inves-
tigated in relation with many types of problems usual in the SN P systems area: handling
languages, looking for small universal systems, etc.

M. A related issue is to consider the class of systems for which the synchronization does
not matter, i.e., they generate/accept the same set of numbers in both modes. Furthermore,
time-free, clock-free, time-independent systems can be considered, in the same way as in [4],
[6], [37].

N. Several times so far, the idea of efficiency was invoked, with the need to introduce
new ingredients in the area of SN P systems in such a way to make possible polynomial
solutions to intractable problems. Actually, such a possibility was already considered in [10]:
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making use use of arbitrarily large pre-computed resources. The framework is the following:
an arbitrarily large net of neurons is given, of a regular form (as the synapse graph) and with
only a few types of neurons (as contents and rules) repeated indefinitely; the problem to be
solved is plug-in by introducing a polynomial number of spikes in certain neurons (of course,
polynomially many), then the system is left to work autonomously; in a polynomial time,
it activates an exponential number of neurons, and, after a polynomial time, it outputs the
solution to the problem. The problem considered in [10] was the SAT problem.

This strategy is attractive from a natural computing point of view (we may assume that
the brain is arbitrarily large with respect to the small number of neurons currently used, the
same with the cells in liver, etc.), but it has no counterpart in the classic complexity theory.
A formal framework for defining acceptable solutions to problems by making use of pre-
computed resources needs to be formulated and investigated. What kind of pre-computed
workspace is acceptable, i.e., how much information may be provided for free there, what
kind of net of neurons and what kind of neurons? (We have to prevent “cheating” by already
placing the answer to the problem in the given resources and then “solving” the problem just
by visiting the right place where the solution waits to be read.) What means introducing a
problem in the existing device? (Only spikes, also rules, or maybe also synapses?) Defining
complexity classes in this case remains as an interesting research topic.

O. Coming back to the initial definitions, there are several technical issues which are
worth clarifying (most probably, for universality and maybe also for efficiency results, they
do not matter, but it is also possible to exist other situations where these details matter).
For instance, the self-synapses are not allowed in the synapse graph. However, a neuron
with a rule a → a and a self-synapse can work forever, hence it can be used for rejecting a
computation in the case when successful computations should halt. Similarly, (in the initial
definition from [23]) the forgetting rules as → λ were supposed to have as /∈ L(E) for all
spiking rules E/ac → a; d from the same neuron, while in extended rules E/ac → ap; d it
was assumed that c ≥ p. Is there any situation where these restrictions make a difference?
Then, in [18] it was shown that some of the ingredients used in the definition of SN P systems
with standard rules can be avoided. This is the case with the delay, the forgetting rules, the
generality of regular expressions. Can these normal forms be combined, thus avoiding at the
same time two of the mentioned features?

P. What then about using a kind of rules of a more general form, namely E/an → af(n); d,
where f is a partial function from natural numbers to natural numbers (maybe with the
property f(n) ≤ n for all n for which f is defined), and used as follows: if the neuron
contains k spikes such that ak ∈ L(E), then c of them are consumed and f(c) are created,
for c = max{n ∈ N | n ≤ k, and f(n) is defined}; if f is defined for no n smaller than or
equal to k, then the rule cannot be applied. This kind of rules looks both adequate from a
neurobiological point of view (the sigmoid excitation function can be captured) and powerful
from a mathematical point of view (arbitrarily many spikes can be consumed at a time, and
arbitrarily many produced).

Q. A standard problem when dealing with accepting devices concerns the difference be-
tween deterministic and non-deterministic systems. Are they different in power, does deter-
minism imply a decrease of the computing power? Up to now, all computability completeness
proofs for the accepting version of SN P systems of various types were obtained for determin-
istic systems. Are there classes (maybe non-universal) for which the determinism matters?
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Actually, the problem can be refined. The determinism is defined usually in terms of non-
branching during computations: a computation is deterministic if for every configuration
there is (at most) one next configuration. A first subtle point: is this requested for all
possible configurations or only for all configurations which are reachable from the initial one?

Maybe more interesting for SN P systems is the possibility to define a strong determinism,
in terms of rules: an SN P system is said to be strongly deterministic if L(E) ∩ L(E′) = ∅
for all rules E/ac → a; d and E′/ac′ → a; d′ from any neuron. Obviously, such a system
is deterministic also when defining this notion in terms of branching (even for arbitrary
configurations, not only for the reachable ones).

Is any class of SN P systems for which these types of determinism are separated?

R. Different from the case of general P systems, where finding infinite hierarchies on the
number of membranes was a long awaited result, for SN P systems one can easily find such
hierarchies, based on the characterization of semilinear sets of numbers (by means of systems
with a bounded number of spikes in their neurons): if for each finite automaton with n states
(using only one symbol) one can find an equivalent SN P system with g(n) neurons, and,
conversely, for each SN P system with m neurons one can find an equivalent (i.e., generating
strings over an one-letter alphabet whose lengths are numbers generated/accepted by the SN
P system) with h(m) states, then, because there is an infinite hierarchy of regular one-letter
languages in terms of states, we get an infinite hierarchy of sets of numbers with respect to the
number of neurons. Still, several problems arise here. First, not always the characterization
of semilinear sets of numbers is based on proving the equivalence of bounded SN P systems
with the finite automata. Then, this reasoning only proves that the hierarchy is infinite, not
also that it is “dense” (connected is the term used in classic descriptional complexity: there
is n0 such that for each n ≥ n0 there is a set Qn whose neuron-complexity is exactly n).
Finally, what about finding classes intermediate between semilinear and Turing computable
for which the hierarchy on the number of neurons is infinite (maybe connected)?

S. The previous question directly suggests two others. The first one is looking for small
universal SN P systems (here “universal” is understood in the sense of “programmable” –
the existence of a fixed system which can simulate any particular system after introducing a
code of the particular system in it – not in the sense of “Turing complete”, although there is
a direct connection between these two notions). This question is considered in [29] for SN P
systems with standard and with extended rules, working either in the computing mode or in
the generating mode. For standard rules, 84 and 76 neurons were used, while for extended
rules 49 and 50 neurons were used, respectively. Are these results optimal? A negative
answer is expected (however, a significant improvement is not very probable). What about
universal SN P systems of other types – in particular, with exhaustive or non-synchronized
use of rules?

T. Problem R also suggests to look for classes of SN P systems which are not equiva-
lent with Turing machines, but also not computing only semilinear sets of numbers, hence
equivalent in power with finite automata. This does not look as an easy question, but it
is rather interesting, in view of the possibility of finding classes of systems with decidable
properties, but (significantly) more powerful than bounded SN P systems. Such a class would
be attractive also from the point of view of applications, because of the possibility of finding
properties of the modeled processes by analytical, algorithmic means.

U. Again in a direct continuation with the previous issue, there appears the need to find
characterizations of classes of languages, other than finite, regular, and recursively enumer-
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able, in terms of SN P systems. The investigations from [9], [12], [14] have left open these
questions, and this fits with the general situation in membrane computing (as well as in DNA
computing): the Chomsky hierarchy seems not to have a counterpart in nature, families like
those of linear, context-free, and context-sensitive languages do not have (easy) characteriza-
tions in bio-inspired computing models. The same challenge appears for families of languages
generated by L systems (sometimes, with the exception of ET0L languages).

V. L systems can be related with SN P systems also at the level of infinite sequences: both
by iterating morphisms (D0L systems) and by taking infinite spike trains we can get classes of
infinite sequences. Directly as spike trains we have binary sequences, but, for extended rules
(and for SN P systems with a parallel use of rules) we can get as an output of a computation
a string or an infinite sequence over an arbitrary alphabet. A preliminary examination
of the binary case was done in [33], but many problems were left open, starting with the
comparison of SN P systems as tools for handling infinite sequences (of bits) with other tools
from language and automata theory (with ω-languages computed by finite automata, Turing
machines, etc.) and with known infinite sequences, e.g., those from [41].

A particular problem from [33] is the following. SN P systems cannot compute arbitrary
morphisms, but only length preserving morphisms (codes). An extension of these latter
functions are the so-called k-block morphisms, which are functions f : {0, 1}k −→ {0, 1}k (for
a given k ≥ 1) prolonged to f : {0, 1}ω −→ {0, 1}ω by f(x1x2 . . .) = f(x1)f(x2) . . .. In [33] it
is only shown that 2-block morphisms can be computed by SN P systems, and the conjecture
was formulated that this is true for any k.

In general, more should be found about the use of SN P systems as tools for transducing
strings and infinite sequences.

W. Maybe useful in addressing the previous problem – and interesting also from other
points of view (e.g., if starting investigations in terms of process algebra), is the issue of
compositionality: looking for ways to pass from given systems to more complex systems, for
instance, to systems generating/accepting the result of an operation between the sets of num-
bers or the languages generated/accepted by the initial systems. Morphisms were mentioned
also above, but there are many other set-theoretic or language-theoretic operations to con-
sider, as well as serial and parallel composition, embedding as a subsystem, etc. Of course,
a central point in such operations is that of synchronization. It is expected that the case of
non-synchronized systems is much easier (maybe, instead, less interesting theoretically).

X. I have mentioned at the beginning of these notes that the axon is not a simple trans-
mitter of spikes, but a complex information processor. This suggests considering computing
models based on the axon functioning (Ranvier nodes amplification of impulses, and other
processes) and a preliminary investigation was carried out in [13]. Many questions remain
to be clarified in this area (see also the questions formulated in [13]), but a more general
and probably more interesting problem appears, namely, of combining neurons and axons (as
information processing units) in a global model; maybe also astrocytes can be added, thus
obtaining a more complex model, closer to reality.

Y. I will conclude with two general issues, where nothing was done up to now. First, SN
P systems have a direct (pictural) similarity with Petri nets, where tokens (like spikes) are
moved through the net according to specific rules. Bridging the two areas looks then rather
natural – with “bridging” understood as a move of notions, tools, results in both directions,
from Petri nets to SN P systems and the other way round.
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Z. Then, directly important for possible applications is the study of SN P systems as
dynamical systems, hence not focusing on their output, but on their evolution, on the prop-
erties of the sequences of configurations reachable from each other. The whole panoply of
questions from the (discrete) dynamical systems theory can be brought here, much similar
to what happened in general membrane computing.

As it was the case also other times, I have to stop because of reaching the end of the
alphabet. . . – with the hope that the reader will shorten this list by providing answers to
some problems.

7 Final Remarks

Many other open problems and research topics can be found in the papers devoted to SN P
systems – the interested reader can check the titles below in this respect (the bibliography
contains all papers about SN P systems which I was aware of at the beginning of November
2006). On the other hand, because the research in this area is quite vivid, it is possible
that some of these problems were solved at the same time or shortly after writing these
notes, without being possible to mention the respective results here. That is why, the reader
is advised to follow the developments in this area, for instance, through the information
periodically updated at the Milano web page [42].
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generated by spiking neural P systems. In [17], Vol. I, 169–194.

14



[10] H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems.
In [17], Vol. I, 195–206, and Proc. 8th Intern. Conf. on Electronics, Information, and
Communication, Ulanbator, Mongolia, June 2006, 49–52.

[11] H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Spiking
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