Research Group on Mathematical Linguistics
Rovira i Virgili University
Report GRLMC 21/01

Elements of Formal Language Theory
for Membrane Computing

Carlos MARTIN-VIDE

Research Group on Mathematical Linguistics
Rovira i Virgili University
PL. Imperial Tarraco 1, 43005 Tarragona, Spain
E-mail: cmv@astor.urv.es

Gheorghe PAUN!

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucuresti, Romania
E-mail: gpaun@imar.ro

Abstract. We introduce the basic elements of formal language theory which con-
stitute the prerequisites for researches in membrane computing (P systems): basic
notions and notations, Parikh mapping, semilinearity, Chomsky hierarchy, closure
properties, decidability, descriptional complexity, normal forms, matrix grammars,
random context grammars, Lindenmayer systems, the splicing operation, insertion-
deletion operations, contextual grammars, grammar systems, finite automata, Tur-
ing machines, register machines. One gives rigorous definitions, most of them illus-
trated by examples, one recalls results of interest for membrane computing, one also
formulates language theory open problems with recent motivation from membrane
computing.

The collected items are classified in three classes: B = basics, A = advanced,
R = related (elements marked with R were not yet used in membrane computing
area, but it is highly possible that they will be useful for future researches).
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1 Introduction

This paper is a quick introduction to formal language theory (for a mathematically
trained reader), collecting the notions and results from this area which are necessary
(and, for the present stage, sufficient) for membrane computing. The need for such
an introduction steamed from two observations. First, membrane computing can
be considered as a branch of formal language theory, because, in spite of the fact
that most of the variants of P systems deal with multisets of symbol-objects and
compute sets of numbers or of vectors of numbers, the proof techniques, the gen-
erative style, the rewriting-type of multiset processing rules are very much similar
to formal language theory. As a consequence, most papers about P systems start
by long recollections of notions, notations, and results from formal language theory.
Of course, for the sake of completeness, this cannot be (yet) avoided, but some
uniformity in notations, for example, would be useful for the readers of membrane
computing papers (if not also for their authors). Second, several times the authors
of the present text have met people interested in membrane computing which ex-
pressed either their difficulty or their fear in entering this domain, because of the
too specialised prerequisites from formal language theory which seem to be neces-
sary. Actually, almost systematically, these people have invoked the “misterious”
notion of a matrix grammar with appearance checking (long name, indeed), as one
not at all very popular in computer science higher education curricula. Unfortu-
nately, this is true, the “old” stuff of regulated rewriting, with the roots in sixties
and flourishing in seventies and eighties, is not taught in current courses of formal
language theory, although, as we hopefuly will prove in this paper, at least basic
regulations on the context-free grammars, such as matrix grammars (with appear-
ance checking), are not only easy to understand, but also very powerful, from many
points of view, and also raise interesting new research questions. Using matrix
grammars is rather useful in many cases, because of several reasons: they involve
context-free grammars, which is the most widely investigated and applied class of
Chomsky grammars (we include here the regular grammars), they have beautiful
normal forms, and, maybe more important, there are very powerful results, proved
several decades ago by means of intricate techniques; by invoking such results we
can make use “for free” of the power of these techniques. A typical illustration of
this assertion is the characterization of recursively enumerable languages by means
of matrix grammars with appearance checking (using A-rules) in the strong binary
normal form (we hope that this long list of technical terms will not scare also the
reader of this text...). The rather complex proof of this result, based on a similar
result of Rosenkrantz, from 1969, about programmed grammars, has the same main
idea as that used by Minsky, when proving the equivalence of Turing machines with
register machines (with two registers). Starting from matrix grammars in the men-
tioned normal form (or from register machines, in the case when recognizing strings)
is now much easier to prove that other generative mechanisms are equivalent with
Turing machines; the necessary proof will be easy just because the hard work was
already done when passing from Turing machines to matrix grammars.

In short, we warmly encourage the reader not to give up in front of a half page



definition, of a notion whose name is composed of four or more terms, assuring
him /her that the reward is rather significant.

As mentioned in the abstract, we recall here several notions and results (for
the reader with a mathematical background). Some of them are basic notions and
notations, others were already used in many places in membrane computing; that is
why we have called them “basic” and marked with a B. Others are a little bit more
sophisticated and have appeared only incidentally in papers dealing with P systems,
so that they are considered “advanced” and indicated by an A. Then, we have
included some notions and results (marked with R, from “related”) which, according
to our knowledge, were not yet used in membrane computing investigations, but they
are good candidates for being used. Maybe, in this way, new ideas for membrane
computing researches will arise. Of course, this classification should be understood
just as an attempt to make easier the life of the reader which is not interested in
too many details from formal language theory, but in a quick training for entering
the membrane computing area.

For additional information in formal language theory (or automata theory, which
is only briefly mentioned here), the reader is referred to the many monographs in this
area, starting with [9], and finishing with the comprehensive [8]. Also, the prereq-
uisites chapter of [6] is a good synthetic source of information, thought incomplete
for our needs (and containing additional material, too, mainly about characteriza-
tions of recursively enumerable languages, which does not seem of direct interest for
membrane computing). In what concerns the precise historical references for the
notions and the results mentioned here, the reader is referred to the monographs
cited at the end of the paper.

2 Basic Notions and Notations about Words

A. Basic notations. An alphabet is a finite nonempty set of abstract symbols.
For an alphabet V' we denote by V* the set of all strings of symbols from
V. The empty string is denoted by A. Mathematically speaking, V* is the
free monoid generated by V under the operation of concatenation. (The unit
element of this monoid is A.) The set of nonempty strings over V, that is
V* — {\}, is denoted by V*. Each subset of V* is called a language over V.
A language which does not contain the empty string (hence being a subset of
V1) is said to be A-free.

Example 1.

V = {a,b,c} is an alphabet,

r = aaabbbcaa = a®b*ca’ is a string over V,

L ={a™" | n > 1} is a language over V.

If x = z125, for some z1,25 € V*, then z; is called a prefix of x and x5 is
called a suffiz of z; if x = x1x923 for some z1,25, 23 € V*, then x, is called



a substring of x. The sets of all prefixes, suffixes, substrings of a string = are
denoted by Pref(z), Suf(x), Sub(x), respectively.

The length of a string x € V* (the number of occurrences in z of symbols from
V) is denoted by |z|. The number of occurrences of a given symbol a € V in
xz € V* is denoted by |z|,. If z € V*, U C V, then by |z|y we denote the length
of the string obtained by erasing from z all symbols not in U, that is,

lely = [xla-

acU

For a language L C V*, the set length(L) = {|z| | x € L} is called the length
set of L.
Example 1. (continued)

[ =9, |z[a =5,

‘m|{a,c} = 67

length(L) = {2n | n > 1}.
The set of symbols occurring in a string x is denoted by alph(z). For a language

L C V*, we denote alph(L) = U,y alph(x). Observe that alph(L) may be a
proper subset of V.

Example 1. (continued)

alph(z) = {a,b, c},

alph(L) = {a, b}.
The Parikh vector associated with a string x € V* with respect to the alphabet
V=Aa1,...,a,} is Yy (x) = (||ay, ||ay, - - -, |Z|a,) (nOte that the ordering of
the symbols from V is relevant). For L C V* we define ¥y (L) = {Vy(z) |z €
L}; this is called the Parikh mapping associated with V. If FL is a family of

languages, then we denote by PsF'L the family of Parikh images of languages
in F'IL.

Example 1. (continued)
\IIV(,Z‘) = (57 3: 1)7
Uy (L) ={(n,n,0) | n>1}.

A set M of vectors in N", for some n > 1, is said to be linear if there are the
vectors v; € N”, 0 < 4 < m, such that

M={v0—|—2aivi\al,...,amEN}.

i=1
A finite union of linear sets is said to be semilinear.

A language L C V* is semilinear if Wy (L) is a semilinear set. The family of
semilinear languages is denoted by SLIN.



Example 2.

{(n,n,0) | n > 1} is a linear set,

{(n,n,0) |n>1}U{(1,1,1)} is a semilinear non-linear set,
{(nm) | n,m > 2} is not semilinear,

{(n,m) | n>1,1<m < 2"} is not semilinear,

Any infinite subset of N which does not contain an infinite
arithmetical progression is not semilinear.

B. Operations with strings and languages. The boolean operations (with
languages) are denoted as usual: U — union, N — intersection, C' — complemen-
tation.

The concatenation of Ly, Ly is L1 Ly = {zy | v € L1,y € Lo}.
We define further:

L° = {)‘}’
LT =LLY i>0

Y

L* = | J L' (the *-Kleene closure),
i=0

LT ={J L’ (the + -Kleene closure).
i=1
A mapping h : V — U*, extended to h : V* — U* by h(\) = {A\} and
h(z1x2) = h(z1)h(xs), for z1,zo € V*, is called a morphism. If h(a) # X for
each a € V, then h is a A-free morphism.

A. A morphism h : V* — U* is called a coding if h(a) € U for each a € V and
a weak coding if h(a) € UU{\} for each a € V. If h: (VU V,)* — V" is the
morphism defined by h(a) = a for a € Vi, and h(a) = A otherwise, then we
say that h is a projection (associated with V) and we denote it by pry,. For a
morphism h : V* — U*, we define a mapping h=! : U* — 2V (and we call
it an inverse morphism) by h™'(w) = {z € V* | h(z) = w}.

If L CV*k>1,and h: V* — U* is a morphism such that h(x) # \ for
each z € Sub(L), |x| = k, then we say that h is k-restricted on L.

R. For z,y € V* we define their shuffie by

zWy={21Y1. - TonUn | T=2T1 - Tn, Y = Y1 - - - Yn,
ziy; €VH51<i<n,n>1}.

B. In general, if we have an n-ary operation on strings, g : V* x...x V* — 2U"
we extend it to languages over V' by

g(Ly,...,Ly) = U g(x1, .., Ty).



A family FL of languages is closed under an m-ary operation g if, for all
languages Ly,..., L, in F'L, the language g(L1,..., L,) is also in F'L.

A. The left quotient of a language L; C V* with respect to Ly C V* is

Lo \L; = {w € V* | there is x € Ly such that zw € L }.

The left derivative of a language L C V* with respect to a string x € V* is

OL(L)={weV*|zwe L}

The right quotient and the right derivative are defined in a symmetric manner:

Li/Ly = {w € V* | there is x € Ly such that wx € L},
O (L)y={weV"|wre L}

A. A language that can be obtained from the letters of an alphabet V and A by
using finitely many times the operations of union, concatenation, and Kleene
x is called regular; also the empty language is said to be regular.

A family of languages is nontrivial if it contains at least one language different
from () and {\}. (We use here the word “family” synonymously with “set” or
“collection”.)

From now on, all families of languages we consider are supposed to be non-
trivial.

A family of languages is called a trio if it is closed under A-free morphisms, in-
verse morphisms, and intersection with regular languages. A trio closed under
union is called a semi-AFL (AFL = abstract family of languages). A semi-
AFL closed under concatenation and Kleene + is called an AFL. A trio/semi-
AFL/AFL is said to be full if it is closed under arbitrary morphisms (and
Kleene * in the case of AFL’s). A family of languages closed under none of
the six AFL operations is called an anti-AFL.

R. Here are some basic results related to abstract families of languages:

1. The family of regular languages is the smallest full trio.
2. Each (full) semi-AFL closed under Kleene + is a (full) AFL.

3. If F'L is a family of A-free languages which is closed under concatenation,
A-free morphisms, and inverse morphisms, then F'L is closed under inter-
section with regular languages and union, hence FL is a semi-AFL. (If
FL is also closed under Kleene +, then it is an AFL.)

4. If FL is a family of languages closed under intersection with regular
languages, union with regular languages, and substitution with regular
languages, then F'L is closed under inverse morphisms.



5. Every semi-AFL is closed under substitution with A-free regular lan-
guages. Every full semi-AFL is closed under substitution with arbitrary
regular languages and under left and right quotients with regular lan-
guages.

6. A family of M-free languages is an AFL if it is closed under concatenation,
A-free morphisms, inverse morphisms, and Kleene +.

7. A family of languages that is closed under intersection with regular lan-
guages, union with regular languages, substitution by A-free regular lan-
guages, and restricted morphisms is closed also under inverse morphisms.

B. Chomsky grammars. Generally speaking, a grammar is a (finite) device
generating in a well specified sense the strings of a language (hence defining
a set of syntactically correct strings). The Chomsky grammars are particular
cases of rewriting systems, where the operation used in processing the strings
is the rewriting (the replacement of a “short” substring of the processed string
by another short substring).

A Chomsky grammar is a quadruple G = (N, T, S, P), where N, T are disjoint
alphabets, S € N, and P is a finite subset of (NUT)*N(NUT)* x (NUT)*.

The alphabet N is called the nonterminal alphabet, T is the terminal alphabet,
S is the aziom, and P is the set of production rules of G. The rules (we also
say productions) (u,v) of P are written in the form u — v. Note that |u|y > 1.

For z,y € (N UT)* we write

r =gy iff ©r=1xuxe,y= 21029,
for some z1,2o € (NUT)" and v — v € P.

One says that z directly derives y (with respect to G). When G is understood
we write = instead of =>. Each string w € (N UT)* such that S =} w
is called a sentential form.

The language generated by G, denoted by L(G), is defined by
LG)={zeT"| S ="z}

Two grammars G1, G are called equivalent if L(G1) —{\} = L(G2) —{\} (the
two languages coincide modulo the empty string).

If in x = y above we have © = zuxy, with ;1 € T*, then the derivation
step is leftmost and we write £ =z, y. The leftmost language generated by
the grammar G is obtained by derivations where every step is leftmost and is
denoted by Lics(G).

Example 3. For the grammar

G1 = ({S},{a,b},5,{S — aSb, S — ab})



we obviously obtain
L(Gy) ={a™V" | n > 1}.

Indeed, each derivation in GGy consists of m > 0 applications of the rule S —
aSbh, and this produces the string a™Sb™, and ends by using the rule S — ab,
which leads to the terminal string a™™'6™*!. Thus, each string generated by
G is of the form a™b", for some n > 1; conversely, each string of this form can
be generated by G.

Example 4. The grammar
Ge = ({S,B},{a,b,c},S,{S — aSBc, S — abc, ¢cB — Bc, bB — bb})
generates the language
L(Gy) = {a™b"c" | n > 1}.

The proof of this assertion is left to the reader.

. According to the form of their rules, the Chomsky grammars are classified as
follows. A grammar G = (N, T, S, P) is called:

— length-increasing, if for all u — v € P we have |u| < |v|.

— context-sensitive, if each u — v € P has u = ujAus, v = ujzus, for
up,up € (NUT)*; A€ N,and z € (NUT)". (In length-increasing and
context-sensitive grammars the production S — A is allowed, providing
that S does not appear in the right-hand members of rules in P.)

— context-free, if each production u — v € P has u € N.

— linear, if each rule u - v € Phasu e N and v e T*UT*NT"*.

— right-linear, if each rule u —v € Phasu € N and v € T* UT*N.

— left-linear, if each rule w -+ v € Phasu € N and v € T* U NT™.

— regular, if each rule w - v € Phasu € N and v € TUTN U {\}.

The arbitrary, length-increasing, context-free, and regular grammars are also
said to be of type 0, type 1, type 2, and type 3, respectively.

Note that the grammar G; from Example 3 is linear, while the grammar G,
from Example 4 is length-increasing.

The family of languages generated by length-increasing grammars is equal to
the family of languages generated by context-sensitive grammars; the families
of languages generated by right- or by left-linear grammars coincide and they
are equal to the family of languages generated by regular grammars, as well
as with the family of regular languages (as defined some pages above).

We denote by RE, CS, CF, LIN, and REG the families of languages generated
by arbitrary, context-sensitive, context-free, linear, and regular grammars, re-
spectively (RE stands for recursively enumerable). By FIN we denote the
family of finite languages.



Therefore, for the grammars from Examples 3 and 4 we have L(G;) € LIN
and L(G,) € CS.

The following strict inclusions hold:
FIN C REGCLINCCF CCSCRE.

This is the Chomsky hierarchy, the constant reference for investigations re-
lated to the power of membrane systems (and of any new types of computing
devices). This important role of Chomsky hierarchy is due to several reasons:
the family RE of languages generated by type-0 Chomsky grammars is exactly
the family of languages which are recognized by Turing machines (see below),
and according to Turing-Church thesis this is the maximal level of algorithmic
computability; the Chomsky hierarchy is well structured, hence we have a de-
tailed classification of computing machineries (in between the above mentioned
classes of grammars there are other types of grammars which were considered
in the literature); there are many results in this area, formal language the-
ory is a well developed foundamental branch of theoretical computer science
(some decades ago it was said that formal language theory is “the flower of
theoretical computer science” — Aho, Salomaa, etc).

Table 1. Closure properties of the families in the Chomsky hierarchy

RE| CS| CF| LIN| REG
Union Y Y Y Y Y
Intersection Y Y N N Y
Complement N Y N N Y
Concatenation Y Y Y N Y
Kleene * Y Y Y N Y

Intersection with

regular languages
Morphisms
A-free morphisms
Inverse morphisms
Left /right quotient
Left /right quotient

with regular languages
Left /right derivative
Shuffle

| <] | |
2| <] | 2| <
2| <] | |
2| <] | |
| <] | |

| | <
| |
2| | <
2| | <
| ] <

We also point here a major feature of the formal grammar approach to com-
putability, which can be considered a drawback from the point of view of
practical computer science: the language generated by a grammar consists of
all strings obtained at the end of “successful” (terminal) derivations; the “un-
successful” derivations are ignored, hence we adopt a positivistic approach,

9



which, because of the nondeterministic behavior of grammars (the rule to be
used at a given step and the substring to be rewritten by that rule are non-
deterministically chosen) is easy to handle at the mathematical level, but not
at the practical level (for instance, when implementing/simulating a grammar
on a computer).

. The closure properties of the families listed above are indicated in Table 1 (Y
stands for yes and N for no).

Therefore, RE, CF, REG are full AFL’s, CSis an AFL (not full), and LIN is
a full semi-AFL.

. Normal forms. From many points of view, in particular, in proofs, it is useful
to characterize a family of languages by grammars of the corresponding type
but of precise particular forms, called normal forms. Such characterizations
(normal forms) exist for all families in the Chomsky hierarchy, but we consider
here only some of those referring to RE languages.

. Theorem 1. (Kuroda normal form) For every type-0 grammar G, an equiv-
alent grammar G' = (N, T, S, P) can be effectively constructed, with the rules
m P of the forms A - BC,A — a,A - \,AB — CD, for A,B,C,D € N
and a € T.

. Theorem 2. (Penttonen normal form) For every type-0 grammar G, an equiv-
alent grammar G' = (N, T, S, P) can be effectively constructed, with the rules
in P of the forms A — z, x € (NUT)* |z| < 2, and AB — AC with
A, B,C e N.

Similar results hold true for length-increasing grammars; then rules of the
form A — X are no longer allowed, but only a completion rule S — X if the
generated language should contain the empty string.

. Theorem 3. (Geffert normal forms) (1) Fach recursively enumerable language
can be generated by a grammar G = (N, T,S, P) with N = {S, A, B,C} and
the rules in P of the forms S — uSv, S — z, with u,v,z € (T U{A, B,C})*,
and only one non-context-free rule, ABC' — .

(2) Each recursively enumerable language can be generated by a grammar G =
(N,T,S,P) with N = {S, A, B,C, D} and the rules in P of the forms S —
uSv, S — z, with u,v,z € (I'U{A, B,C, D})*, and only two non-context-free
rules, AB — X\, CD — \.

A linear grammar with only one nonterminal is said to be minimal. Thus,
the Geffert normal forms say that each recursively enumerable language can
be obtained from a minimal linear language by applying the reduction rule
ABC — ), or the reduction rules AB — \,CD — \.

10



B. Necessary conditions. For a language L C V*, we define the equivalence
relation ~p, over V* by z ~, y iff (uzv € L & uyv € L) for all u,v € V*.
Then V*/ ~ is called the syntactic monoid of L.

Theorem 4. (Myhill-Nerode theorem) A language L C V* is regular iff
V*/ ~p is finite.

Theorem 5. (Bar-Hillel/uvwzy/pumping lemma) If L € CF,L C V*, then
there are p,q € N such that every z € L with |z| > p can be written in the
form z = wvwzy, with u,v,w,z,y € V*, lvwz| < q,vz # A, and uww'wa'y € L
for all i > 0.

Theorem 6. (Parikh theorem) Every contezt-free language is semilinear.
Otherwise written, we have the relation PsCF C SLIN.

Corollary 1. (i) Every context-free language over a one-letter alphabet is
reqular.

(ii) The length set of a context-free language is a finite union of arithmetical
Progressions.

The conditions of Theorems 4 — 6 are only necessary, not sufficient for a lan-
guage to be in the corresponding family.

Using these necessary conditions (and related tools, not specified here) the
following relations can be proved:

Ly = {a"¥" | n > 1} € LIN — REG,

L, =L,L, € CF — LIN,

Ly ={a"b"c" |n>1} € CS — CF,

Ly ={zcx |z € {a,b}"} € CS — CF,

Ls={a* |n>1} € CS - CF,

Le¢ = {a™b™c"d™ | n,m > 1} € CS — CF,
L;={a"t" |n>1,1<m<2"} e CS—CF,

Ly ={a"b"? |1 <n<m<p}eCS—CF,

Ly ={z € {a,b}" | |z|s = |z[p} € CF — LIN,

Ly ={z€{a,b,c}" ||z|ls = |z|p = |2|.} € CS — CF.

R. The Dyck language, D, over T,, = {aq,d},...,a,,a,}, n > 1, is the context-
free language generated by the grammar

G=({S},T,,S,{S = \S = SS}U{S = a;Sa, | 1 <i < n}).

Intuitively, the pairs (a;,a}),1 < i < n, can be viewed as left and right paren-
theses, of different kinds. Then D, consists of all strings of correctly nested
parentheses.

11



Theorem 7. (Chomsky—Schiitzenberger theorem) Every context-free language
L can be written in the form L = h(D,NR), where h is a morphism, D,,, n > 1,
1s a Dyck language, and R is a reqular language.

B. Lindenmayer systems. Membrane systems are biologically inspired and,
also, fundamentally parallel computing devices; these observations make their
comparison with Lindenmayer systems rather natural.

A OL (0-interactions Lindenmayer) system is a construct G = (V, w, P), where
V is an alphabet, w € V* (axiom), and P is a finite set of rules of the form
a — v with a € V,v € V*, such that for each a € V there is at least one rule
a — v in P (we say that P is complete). For wi,wy € V* we write w; = wy
ifw, =ay...04,ws =vy...0,, for a; = v; € P;1 < i < n. The generated
language is L(G) = {z € V* | w =" z}.

If for each rule @ — v € P we have v # A, then we say that G is propagating
(non-erasing); if for each a € V there is only one rule ¢ — v in P, then G is
said to be deterministic. If we distinguish a subset 7" of V' and we define L(G)
as L(G) = {x € T* | w =* z}, then we say that G is ertended. The family
of languages generated by OL systems is denoted by 0L; we add the letters P,
D, FE in front of 0L if propagating, deterministic, or extended 0L systems are
used, respectively.

A tabled OL system, abbreviated TOL, is a system G = (V,w, Py, ..., P,), such
that each triple (V,w, P;),1 < i < n, is a OL system; each P; is called a table,
1 <7 < n. The generated language is defined by

LG)={z e V" |w=p, w1 =>p, ... =>p,, Wn =71,
m>0,1<j<n1<i<m}.

(Each derivation step is performed by the rules of the same table.)

A TOL system is deterministic when each of its tables is deterministic. The
propagating and the extended features are defined in the usual way.

The family of languages generated by TOL systems is denoted by T0L; the
ETOL, EDTOL, etc. families are obtained in the same way as FOL, EDOL,
etc.

Example 5. The DOL system
G = ({a},a,{a — aa})

generates the language {a?" | n > 1}, which is not context-free.

A. Example 6. The EOL system

G={AA,B,B,C,CF,a,b,c},{a,b,c}, ABC, P),

12



with the rules

A—AA', A—a A - A A —a a—F
B—- BB, B—b B —-B,B —b b—F,
Cc—cCcC,C—c C—=C,C'—c¢c c—F,
F— F,

generates the non-context-free language {a"b"c" | n > 1} (the reader is asked
to check this assertion).

. The DOL family is incomparable with FIN, REG, LIN, CF, whereas FOL
strictly includes the family C'F'; ETOL is the largest family of Lindenmayer
languages with 0-interactions, it is strictly included in C'S, and it is a full AFL.

Here are some languages which are not in given L families:

L, = {a,aa} ¢ DOL,

Ly ={a™b"a™ |1 <m <n} ¢ EOL,

Li3 ={a" | n is a prime number} ¢ ETO0L,
Ly = {w € {a,b}* | |w|, = 2¥l«} ¢ ETOL.

The languages Li3, L4 illustrate the strictness of the inclusion PsETOL C
PsCS.

It is not known whether or not PsFEOQL is strictly included into PsETOL.

. An interesting feature of a DOL system, G = (V,w, P), is that it generates
its language in a sequence, L(G) = {w = wy, w1, wo, ...}, such that wy =
w; = w1 = .... Thus, we can define the growth function of G, denoted by
growthg : N — N, by

growthg(n) = |wy|, n > 0.

. Descriptional complexity. A given language can be generated by infinitely
many different grammars, but it is natural to look for grammars which are as
simple as possible from various points of view. To this aim we need measures
of grammar complexity.

Having a class X of grammars, a descriptional complexity measure (we also
say measure of syntactical complezxity) is a mapping K : X — N which is
extended to languages generated by elements of X by K(L) = min{K(G) |
L = L(G),G € X}. If necessary, then we also write Kx (L), to specify the
class of grammars used.

Here are three basic measures for context-free languages (they can be easily
extended to non-context-free grammars). For a context-free grammar G =
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(N, T, S, P) we define

Var(G) = card(N),
Prod(G) = card(P),
Symb(G) = >_ Symb(r), where Symb(r: A — z) = |z| + 2.

reP

For L € CF and M € {Var, Prod, Symb} we define

Mcr(L) = inf{M(G) | L = L(G), G a context-free grammar}.

A complexity measure M is called non-trivial if for each n there is a grammar
G, such that M(L(G,)) > n; M is said to be connected if there is ng such
that for each n > ng there is G, with M(L(G,)) = n.

All measures Varcr, Prodcr, Symber are connected (even with respect to the
family of regular languages). Two measures of syntactical complexity cannot
generally be simultaneously improved: there are languages L such that if we
find a grammar for L which is optimal from the point of view of one measure,
then this grammar is not optimal from the point of view of the other measure.

Most decision problems with respect to measures Varcr, Prodcr, Symbcr are
unsolvable (of course, with respect to context-free grammars): for arbitrary
G and n, it is not decidable whether or not K(L(G)) = n; it is not possible
to effectively compute K(L(G)), for arbitrary G; given a grammar G, it is
not possible to construct algorithmically a grammar G’ such that K(L(G)) =
K(G").

. Automata and transducers. Automata are computing devices which start
from the strings over a given alphabet and analyze them (we also say recognize),
telling us whether or not the input string belongs to a specified language.

The five basic families of languages in the Chomsky hierarchy, REG, LIN,
CF, CS, RE, are also characterized by recognizing automata. These automata
are: the finite automaton, the one-turn pushdown automaton, the pushdown
automaton, the linearly bounded automaton, and the Turing machine, respec-
tively. We present here only two of these devices, those which, in some sense,
define the two poles of computability: finite automata and Turing machines.

A (nondeterministic) finite automaton is a construct
M = (K7 VaSOaFa5)7

where K and V are disjoint alphabets, so € K, FF C K,and 6 : K xV —
2K K is the set of states, V is the alphabet of the automaton, sq is the
initial state, F' is the set of final states, and ¢ is the transition mapping. If
card(0(s,a)) < 1 for all s € K,a € V, then we say that the automaton is
deterministic. A relation |- is defined in the following way on the set K x V*:
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for s, € K,a € V,x € V* we write (s,ax) F (¢',z) if ' € d(s,a); by
definition, (s,A) F (s, A). If F* is the reflexive and transitive closure of the
relation F, then the language of the strings recognized by automaton M is
defined by

L(M)={zeV*|(s0,2) F* (s,\),s € F}.

It is known that both deterministic and nondeterministic finite automata char-
acterize the same family of languages, namely REG. The power of finite au-
tomata is not increased if we also allow A-transitions, that is, if § is defined
on K x (V U{\}) (the automaton can also change its state when reading no
symbol on its tape), or when the input string is scanned in a two-way manner,
going along it to right or to left, without changing its symbols.

. An important related notion is that of a sequential transducer which is nothing
else than a finite automaton with outputs associated with its moves; we do
not enter here into details and refer the reader to the general formal language
theory literature.

Figure 1: A finite automaton

. We can imagine a finite automaton as in Figure 1, where we distinguish the
input tape, on whose cells we write the symbols of the input alphabet, the
read head, which scans the tape from the left to the right, and the memory,
able to hold a state from a finite set of states. In the same way, a sequential
transducer is a device as in Figure 2, where we also have an output tape, where
the write head can write the string obtained by translating the input string.

Lz

S

|
\THH

Figure 2: A sequential transducer
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A. A Turing machine is a construct
M = (K,V;T,B,S(),F,é),

where K,V are disjoint alphabets (the set of states and the tape alphabet),
T C V (the input alphabet), B € V —T (the blank symbol), s, € K (the initial
state), I C K (the set of final states), and ¢ is a partial mapping from K x V
to the power set of K x V x {L, R} (the move mapping; if (s',b,d) € (s, a),
for s, € K,a,b € V, and d € {L, R}, then the machine reads the symbol a
in state s and passes to state s’, replaces a with b, and moves the read-write
head to the left when d = L and to the right when d = R). If card(4(s,a)) <1
for all s € K,a € V, then M is said to be deterministic.

An instantaneous description of a Turing machine as above is a string zsy,
where z € V*y € V*(V — {B}) U{\}, and s € K. In this way we identify
the contents of the tape, the state, and the position of the read-write head:
it scans the first symbol of y. Observe that the blank symbol may appear in
x, 1, but not in the last position of y; both z and y may be empty. We denote
by I D, the set of all instantaneous descriptions of M.

On the set IDj; one defines the direct transition relation ;s as follows:

zsay b xbs'y it (s',0, R) € §(s,a),
zs by xbs’ iff (s',b, R) € (s, B),
zesay by xs'chy iff (8,0, L) € 6(s,a),
zes by xs'ch iff (s',b, L) € §(s, B),

where z,y € V*, a,b,c € V,s,s € K.
The language recognized by a Turing machine M is defined by

L(M) ={weT"| sowk}, xzsy for some s € F,z,y € V*}.

(This is the set of all strings such that the machine reaches a final state when
starting to work in the initial state, scanning the first symbol of the input
string.)

It is also customary to define the language accepted by a Turing machine as
consisting of the input strings w € 7™ such that the machine, starting from the
configuration sow, reaches a configuration where no further move is possible
(we say that the machine halts); in this case, the set F' of final states is no
longer necessary. The two modes of defining the language L(M) are equivalent,
the identified families of languages are the same, namely RFE, and this is true
both for deterministic and nondeterministic machines.

Graphically, a Turing machine can be represented as a finite automaton (Figure
1). The difference between a finite automaton and a Turing machine is visible
only in their functioning: the Turing machine can move its head in both
directions and it can rewrite the scanned symbol, possibly erasing it (replacing
it with the blank symbol).
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A Turing machine can be also viewed as a mapping-defining device, not only as
a mechanism defining a language, but we do not enter here into details (roughly
speaking, the computed mapping links two instantaneous descriptions of the
tape, an input one and a halting one which gives the value of the function).

When working on an input string a Turing machine is allowed to use as much
tape as it needs. Note that finite automata use (in the read manner) only
the cells where the input string is written. A Turing machine allowed to use
only a working space linearly bounded with respect to the length of the input
string is called a linearly bounded automaton. These machines characterize the
family C'S.

. Register machines. A very powerful tehnique in automata and language
theory is to consider the strings over an alphabet with £ symbols as numbers
in base k£ + 1 (none of the symbols stands for zero), to work with numbers,
and eventually to return to strings. This is the basic idea of register machines,
already investigated in sixties (and it is also the proofidea of a central result in
regulated rewriting, namely, of the characterization of recursively enumerable
languages by context-free matrix grammars with appearance checking — see
definitions in the corresponding section below).

We consider here the register machines in the form used in [4]:

An n-register machine is a construct M = (n, R, i, f), where: (a) n is a
natural number (the number of registers the machine may use); (b) R is a set
of labeled program instructions of the form & : (op(i), [, m) such that op(i) is an
operation on register ¢ of M and k, [, m are labels from a set of labels Lab(M)
(Lab(M) labels the program instructions of M in a one-to-one manner), k # f,
[ is the label for continuing the program if op(i) can be applied to register ¢
and m is the label for continuing the program if it is not possible to apply
op(i) to register i; (c) f is the final label, to which we assign the instruction
end, which halts the program of the register machine M; (d) 4 is the initial
label to start the program.

We will use the following program instructions (op(i), [, m) :

— (S(@),l,m) : if possible (i.e., if the contents of register i is greater than
zero), subtract 1 from register ¢ and go to label I, otherwise skip, i.e., do
not change the contents of register ¢, and continue with the instruction
with label m;

— (A(%),h,h) : add 1 to register i and continue the program with the in-
struction at label h; obviously, the operation A(7) is always possible, hence
both labels where to continue have to be the same.

In some variants of register machines, h as well as one out of [, m have to be

k+1, with £ being the label of the program instruction under consideration; we
do not consider such restrictions (hence our variant is more powerful), because
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writing programs for a register machine becomes easier in the variant adopted
here.

An n-register machine M can be used to compute a (partially defined) function
g : N — N in the following way: M starts with m € N in register 1; if M
halts in the final label f and with the contents of register 1 being r, then we
say that M has computed g(m) = r, otherwise (that is, if M does not halt in
the final label f when started with m in register 1), g(m) remains undefined.

Register machines (with two registers) are equivalent with Turing machines, in
the sense that they compute the same family of (partially defined) functions.

Example 7. We consider a 2-register machine which computes the partial
function ¢ : N — N which yields m for even numbers 2m and remains
undefined for odd natural numbers.

Such a machine is M = (2, R, 0,5), with the following instructions (0 is the
initial label):

0:(5(1),1,3),
1:(A(2),2,2),
2:(5(1),0,2),
3:(S5(2),4,5),
4:(A(1),3,3),
5:end

This “program” works as follows: If at label 0 the contents of register 1 is zero,
then we jump to label 3, where in a loop which repeatedly uses instructions 3
and 4, M copies register 2 (which at the beginning of the loop contains half of
the initial value from register 1) back into register 1, and, after this copying,
M stops in label 5; otherwise, if at label 0 the subtraction is possible, we
subtract 1 and continue at label 1, where we add 1 to register 2; then again
we try to subtract 1 at label 2; if this is not possible, then we enter an infinite
loop in 2; otherwise we subtract 1 and return to label 0. It is now obvious to
see that in fact M computes the partial function g : N — N which computes
m/2 for an even number m and remains undefined for an odd natural number
m.

. Regulated rewriting. The context-free grammars are not powerful enough
for covering most of the important syntactic constructions in natural and ar-
tificial languages, while the context-sensitive grammars are too powerful (for
instance, the family C'S has many negative decidability properties and the
derivations in a non-context-free grammar cannot be described by a tree). A
way to overpass this difficulty is to restrict the freedom of using the rules
of a context-free grammar, and this has motivated the introduction of sev-
eral dozens of controls/regulations of the derivation in context-free grammars.
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The oldest one, the matriz grammars, were introduced, in a particular form,
already in 1965, and it turns out to be very useful for membrane comput-
ing. We present it in a gradual (historical) manner, first in the particular and
weaker form “without appearance checking”, and then in the general form, the
one which is equal in power to Chomsky type-0 grammars.

A context-free matriz grammar (without appearance checking) is a construct
G = (N,T,5,M), where N,T are disjoint alphabets (of nonterminals and
terminals, respectively), S € N (axiom), and M is a finite set of matrices, that
is, sequences of the form (A; — z1,..., A, — x,), n > 1, of context-free rules
over NUT. For a string z, a matrix m = (r1,...,r,) is executed by applying
productions 71, ..., 7, one after the other, following the order they are listed in.
Formally, we write y =, z if there is a matrix m = (4; — 1, ..., A, — )
in M and the strings wq, wo, ..., Wy in (N UT)* such that y = wy, wpy1 = 2
and for each i = 1,2,...,n we have w; = wjAw!, w41 = wix;w). If the
matrix m is understood, then we write = instead of =>,,,. The reflexive
and transitive closure of this relation is denoted by =>*. Then, the generated
language is
LG)={weT" | S=" w}.

The family of languages generated by context-free matrix grammars is denoted
by M AT* (the superscript indicates that A-rules are allowed); when using only
M-free rules, we denote the corresponding family by M AT.

Example 8. The non-context-free language L3 = {a"b"c" | n > 1} mentioned
above can be generated by the matrix grammar

G = ({S,A,B,C} {a,b,c}, S, M), with the matrices
M = {(S— ABC),

(A—aA,B— bB,C — cC),

(A—a,B—bC —c)}.

The reader can easily check this assertion: the use of each matrix increases
synchronously the number of occurrences of symbols a, b, c.

It is also easy to construct matrix grammars for the non-context-free languages
Ly, Lg considered above. This might not be similarly easy also for language
L7, hence we give a matrix grammar for this language.

Example 9. Consider the following matrix grammar:

G = ({S,A,B,C,D,E},{a,b},S, M), with M containing the matrices
my = (S — AE),
mg=(A— A, E— DD),
ms = (A — aB),
my = (B — B,D — EE),
ms = (B — aA),
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me = (A — C),

mr; = (B — C),

mg = (C — a),

mg = (C — C,E —b),
my = (C — C,D —b),
mi = (S — ab).

Excepting the derivation S — ab (using the matrix my;), all derivations in
G begin by using the matrix m;, and contain two main phases: one which
uses the matrices mg, mg, miy (in the presence of C), and an initial one which
uses the matrices moy, ms, m4, ms. These phases are separated by a step which
uses either mg or my;. In the first phase, the matrices my, and m4 can double
the number of occurrences of the symbols D and E. This is possible only in
the presence of symbols A and B, respectively. The change from A to B and
conversely introduces an occurrence of the terminal a. Since it is not necessary
to double all occurrences of D and E by matrices my and my, the number of
occurrences of D and FE is smaller than or equal to 2", where n is the number
of occurrences of the symbol a. The second phase of the derivation replaces
each occurrence of D and E by b. Therefore, the generated string belongs to
the language L.

Conversely, each string in L; can be generated by the grammar G, hence we
have the equality L(G) = L.

We leave to the reader the task to write a grammar for the language Lg,
and we only produce a grammar for the language Lqo. Actually, because Liq
is the permutation closure of the language L3, we only indicate the way of
constructing a grammar G' = (N', T, S, M') which generates the permutation
of the language generated by a given matrix grammar G = (N, T, S, M). The
idea is rather simple: For each terminal symbol a of G we introduce the symbol
a’ which is a nonterminal for G’. Then, G’ contains all matrices of G, as well
as the matrices

(a =0, —d), a,beT,
(@ —a), aeT.
(Clearly, N' = NU{d' | a € T}.) The matrices from M’ — M can be used

at any time, and they permute the (primed) terminal symbols of G in an
arbitrary manner, hence producing all permutations of strings in L(G).

In this way we have obtained a proof for the important observation that the
families M AT, M AT* are closed under permutation.

The following results about matrix languages are known:

1. OF ¢ MAT C MAT* C RE.
2. MAT C CS, CS — MAT* # 0.
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3. Each language L € MAT* L C a*, is regular. (This implies that the
above language Ls is not in M AT?.)

The last assertion has some interesting consequences:

1. DOL — MAT* # 0, PsDOL — PsMAT* # 0,
2. PsCS — PsMAT* # 0.

The questions whether or not the inclusion MAT C MAT” is proper and
whether or not M AT?* contains languages which are not context-sensitive are
old open problems of this area.

. In a matrix grammar (without appearance checking), when using a matrix, all
rules are used, in the ordering imposed by the matrix. A powerful extension
is provided by the possibility of skipping certain rules, and this leads to the
definition of matrix grammars with appearance checking.

Such a grammar is a construct G = (N, T, S, M, F), where N,T are disjoint
alphabets, S € N, M is a finite set of sequences of the form (A4; — z1, ...,
A, = 1), n > 1, of context-free rules over NUT (with A; € N,z; € (NUT)*,
in all cases; thus, (N,T,S, M) is a matrix grammar as above), and F is a set
of occurrences of rules in M (N is the nonterminal alphabet, 7" is the terminal
alphabet, S is the axiom, while the elements of M are called matrices).

For y,z € (NUT)* we write y = z if there is a matrix (4 — z1, ..., 4, —
x,) in M and the strings w; € (NUT)*,1 < i< n+ 1, such that y = wy, 2z =
W41, and, for all 1 <4 < n, either (1) w; = wjA;w!, w1 = wz;w], for some
w;,w; € (NUT)*, or (2) w; = w41, A; does not appear in w;, and the rule
A; — x; appears in F.

Therefore, the difference between a matrix grammar with appearance checking
and one without appearance checking is the fact that in the former case we
have at our disposal the set F', of occurrences of rules in the matrices of M
(that is, if the same rule, say A — x, appears several times in the matrices,
only some of them can be present in F'; we may interpret them as “marked”,
having some “flags” which distinguish them from the other rules); the rules of
a matrix are applied in order, as usual, possibly skipping the rules in F' if they
cannot be applied. Thus, if a rule not in F' is met, then it has to be used. If a
rule from F' is met, then we have two cases: if it can be applied, then it must
be applied; if it cannot be applied (the nonterminal from its left hand member
is not present in the current string), then the rule may be skipped. That is why
the rules from F' are said to be applied in the appearance checking mode. The
information given by such an use of a rule from F' is rather powerful, because
in the case of skipping the rule we get a “negative information”: a certain
symbol s not present in the string. The example given below will illustrate
both the definition of the derivation in a matrix grammar with appearance
checking and the power of using the rules from the set F'.
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The language generated by G is defined by L(G) = {w € T* | S =* w}. The
family of languages of this form is denoted by M AT2, when using A-rules and
by M AT,. when only A-free rules are allowed.

It is known that

1. MAT C MAT,. C CS,
2. MAT» C MAT? = RE.

We have mentioned above that the language Ls = {a®" | n > 1} is not in
the family M AT?. In contrast, this language can be generated by a matrix
grammar using the appearance checking feature. Actually, we will produce a
A-free matrix grammar with appearance checking for the language L; = {ba?" |
n > 1}. The initial symbol b can be erased by a restricted morphism or by
a left derivative; because the family M AT, is closed under these operations,
we obtain the fact that Ly € MAT,., hence a grammar for Ls can also be
obtained — but it will be a little bit more complex and we want to have a
clearer example here.

Example 10. Consider the grammar
= ({5, A,B,X,Y, Z,#},{a, b}, S, M, F),

with the following matrices:

X—>XA—>BB)
X oY, A—#),

Y—)ZB—>#)
Z = Z,A—a),

= (
= (
= (
= (
= (
= (
= (
= (
The set F' consists of all the rules having the symbol # in their right hand
member.

Let us examine the work of this grammar. First, let us observe that # is a
trap-symbol, once introduced, it cannot be removed, hence the sentential form
will not lead to a terminal string. That is, the rules from F' should be always
“applied” by skipping them, hence when the sentential form does not contain
the corresponding symbols A, B from the rules from the second positions of
matrices ms, ms, mg. Second, one sees that the symbols X, Y, Z are a sort of
control symbols, the “real work” is done by the rules from the second place of
matrices, under the control of the rules from the first position. Specifically, in
the presence of X one doubles the length of the string (passing from a string
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of the form X A™ to a string of the form X B*™) in the presence of Y one
returns to a string of the form X AP, while in the presence of Z we can pass to
a terminal string.

We start by using mq, hence producing the string X A. Assume that we have
a sentential form X A™, for some m > 1. As we have mentioned above, if we
use mg in order to rewrite a string which contains at least one occurrence of
A, then the trap-symbol # is introduced and the derivation will not lead to a
terminal string. Thus, we have to use my as much as possible, that is, until
producing the string X B*™ (each use of the matrix replaces one occurrence
of A by two occurrences of B). To such a string we can apply (only) ms,
and we obtain the string Y B*™. Observe the important contribution of the
rule A — #: if we do not introduce the symbol #, then we are sure that all
symbols A were rewritten, the doubling was complete. Now, matrix my4 should
be used as long as at least one occurrence of B is present: if at least one B is
present, then the matrices ms, mg will introduce the trap-symbol # . When
we get the string Y A2™ we can use either the matrix ms, or the matrix mg. In
the former case we get the string X A?™, hence the process can be repeated.
In the latter case we get the string ZA?™. From now on, only matrices my, mg
can be used. Of course, mg should be used when only one occurrence of A is
present, otherwise the string cannot be processes any more, in spite of the fact
that it is a nonterminal one. Thus, we can repeatedly double the number of
occurrences of A, and then we can turn to a terminal string. This means that
the language Lf is generated, indeed.

If matrix mg is replaced by mg = (Z — a,A — a), then we generate the
one-letter non-regular language {a*"*!' | n > 1}.

. The previous grammar had matrices of a rather restricted form. Actually, for
each language in M AT\, (hence for each recursively enumerable language) one
can find a grammar of this form. Specifically, the following important result
holds.

A matrix grammar G = (N,T,S, M, F) is said to be in the binary normal
form if N = Ny UN,U{S, #}, with these three sets mutually disjoint, and the
matrices in M are in one of the following forms:

1
2. (X =Y, A— 1), with X,Y € Ni,A€ N,z € (NyUT),
3. X-)KA-)#),WithX,YENl,AENQ,

4. (X > N\, A — x), with X € N;, A€ Ny, and z € T*.

Moreover, there is only one matrix of type 1 and F' consists exactly of all rules
A — # appearing in matrices of type 3; # is a trap-symbol, once introduced,
it is never removed. A matrix of type 4 is used only once, in the last step of
a derivation.
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Theorem 8. For each matriz grammar there is an equivalent matriz grammar
in the binary normal form.

For an arbitrary matrix grammar G = (N, T, S, M, F'), let us denote by ac(G)
the cardinality of the set {A € N | A — « € F'} and by Var(G) the cardinality
of N. From the construction in the proof of Theorem 8 (Lemma 1.3.7 in [3])
one can see that if we start from a matrix grammar G and we get the equivalent
grammar G’ in the binary normal form, then ac(G’) = ac(G). Moreover, it is
known already from eighties that for each language L. € RFE there is a matrix
grammar with appearance checking G such that L(G) = L and Var(G) < 6.

This last result was recently improved in [4], where it was proved that four
nonterminals are sufficient in order to characterize RE by matrix grammars
and out of them only three are used in appearance checking rules. Of interest
for membrane computing proved to be another result from [4]: if the total
number of nonterminals is not restricted, then each recursively enumerable
language can be generated by a matrix grammar G such that ac(G) < 2.

Consequently, to the properties of a grammar G in the binary normal form
we can add the fact that ac(G) < 2. One says that this is the strong binary
normal form for matrix grammars.

It is an open problem whether or not the results from [4] can be improved.
In particular, it is of interest to find whether or not grammars G such that
ac(@) < 1 can characterize RE (it was conjectured that the answer is negative,
namely, that ac(G) < 1 implies L(G) € MAT?).

. As we have mentioned, there are many ways to control the derivation of a
context-free grammar in such a way to generate non-context-free languages.
Details can be found in [3]. We only recall here some basic definitions.

A context-free programmed grammar is a construct G = (N, T, S, P), where
N,T,S are as above, the set of nonterminals, the set of terminals, and the
start symbol, and P is a finite set of productions of the form (b : A — z,
E, F), where b is a label, A — z is a context-free production over N UT, and
E, F are two sets of labels of productions of G. (E is said to be the success
field, and F is the failure field of the production.) A production of G is applied
as follows: if the context-free rule A — z can be successfully executed, then it
is applied and the next production to be executed is chosen from those with
the label in E', otherwise, we choose a production labeled by some element of
F, and try to apply it. This type of programmed grammars is said to be with
appearance checking; if no failure field is given for any of the productions, then
a programmed grammar without appearance checking is obtained.

Sometimes it is useful to write a programmed grammar in the form G =
(N,T,S, P,o,p), where N, T, S are as above, P is a set of usual context-free
rules and o, ¢ are mappings from P to the power set of P; o(p),p € P, is
the success field of the rule p (a rule in o(p) must be used after successfully
applying the rule p), and ¢(p), p € P, is the failure field (a rule from ¢(p) must
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be considered when p cannot be applied). This way of writing a programmed
grammar emphasizes the important feature of these devices: the control is
imposed on the next-rule-to-be-used, on the sequence of rules, from a step to
the next one (not by prescribing blocks of rules, as in a matrix grammar).

The family of languages generated by programmed grammar with arbitrary
context-free rules is denoted by PR).; when only A-free rules are used one
removes the superscript \; when all failure fields are empty, then one removes

the subscript ac.

One knows that M ATg = PR for all combinations of a and 3 (of course, «
can be A or can be missing, while 8 can be ac or can be missing).

. A context-free ordered grammar is a system G = (N, T, S, P, >), where N, T, S
are as above, P is a finite set of context-free productions, and > is a partial
order relation over P. A production p can be applied to a sentential form x
only if it can be applied as a context-free rule and there is no production r € P
such that r is applicable and r > p holds.

The family of languages generated by ordered grammars is denoted by ORD
when only A-free rules are used, and by ORD?* when arbitrary context-free
rules are allowed. The following relations are known:

1. ET0OL C ORD C MAT,.,
2. ORD» C RE.

. Regulated applications of productions can also be based on checking the con-
tents of the string to which a rule is to be used. We present here only the ran-
dom contezt grammars, which are constructs G = (N, T, S, P), where N, T, S
are as above and P is a finite set of triples of the form p = (A — w; E, F),
where A — w is a context-free production over N UT and FE, F' are subsets of
N. Then, p can be applied to a string x € (N UT)* only if A appears in z,
E C alph(x) — {A}, and F N (alph(z) — {A}) = 0. If E or F is the empty set,
then no condition is imposed by E or F, respectively. E is said to be the set
of permitting and F' is said to be the set of forbidding context conditions of p.

The elements of E, F' can also be strings, and then all the strings from E should
appear in the sentential form to be rewritten and no string from F' should
appear in this sentential form. Such grammars (called semi-conditional) gen-
erate all recursively enumerable or all context-sensitive languages, depending
on whether A-rules are used or not, respectively.

For random context grammars, we have the following results. Denote by RC?,
the family of languages generated by random context grammars with erasing
rules; when all sets F' are empty, then the subscript ac is removed, and when
only A-free rules are used we remove the superscript A\. We have:

1. CF C RC - MAT C RCac = MATac:
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2. RC C RC* C MAT» C RC) = RE.

R. Grammar systems. Another very fruitful idea for increasing the power of
context-free grammars (in certain cases, also of regular grammars) is to con-
sider distributed generative devices: constructs composed of several grammars
working together according to a well-specified cooperation protocol. This leads
to the idea of a grammar system. Two main classes of grammar systems have
been investigated, the sequential ones (known under the name of cooperat-
ing distributed grammar systems) and the parallel communicating grammar
systems. We briefly introduce here both these classes; details — including bib-
liographical references — can be found in [1] and [8].

R. A cooperating distributed (in short, CD) grammar system of degree n,n > 1,
is a construct

I'=(N,T,S,P,P,,... PB),

where N, T are disjoint alphabets (the nonterminal and the terminal alphabet,
respectively), S € N (the axiom), and P, ..., P, are finite sets of context-
free rules over N U T. For two sentential forms w,w’ over N U T, we write
w = w,w =75 w w=7>" v, v =7 ww="w for some k > 1,
if w' can be obtained from w (1) by any number of derivation steps, (2) by k
derivation steps, (3) by at most k derivation steps, (4) by at least k derivation
steps, (5) by a maximal number of derivation steps, using rules from F;. (In
the case of the ¢ mode, no further derivation step w’ = w" is possible by
means of rules from P,.) The language L,(T'), generated by I' in the mode
a€ {xt}U{< k,=k,> k| k> 1}, consists of all strings z € T* such that
S=>;?‘1 wy =G, ... = Wm = T, for some m > 1,1 < j, <n,1 <s<m.
(That is, the “components” Py, ..., P, of the system work in turn, according
to the cooperation protocol a;, on a common sentential form. When a terminal
string is obtained it is said to be generated by the system.)

Example 11. For the CD grammar system

r = ({S,5,A4,A" B,B'},{a,b,c}, S, P, P»), with,
P ={S— 58— AB A—aB—bc,A— aA',B— bB'c},
P, ={A"—> A, B' — B},

we obtain

LZQ(F) = LZQ(F) = {a"b"c" | n Z ].},
L:k(F) = LZk(F) = @, fOI" all k‘ Z 3

The reader can easily check these equalities (in the modes = 2 and > 2 the
system works like a matrix grammar, synchronously increasing the number of
occurrences of each terminal symbol).
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We denote by CD,(«) the family of languages generated by CD grammar
systems of degree at most n > 1, in the mode «; when the degree is not
bounded the subscript n is replaced by *x. We recall here only a few results
about the power of CD grammar systems; further results can be found in [1]
and in the corresponding chapter from [8].

1. CF = CD,(x) = CD,(a) = CD,(= 1) = CD,(< k) = CD,(> 1), for all
k>laef{ttu{=42>7]j=>1}

3. CD.(a) C MAT* foralla € {=k,> k | k > 1},
4. CD,(=k) CCD,(=rk), for all n,r, k > 1.

. A parallel communicating (PC, for short) grammar system of degree n, n > 1,
is a construct

I'= (NaTaK: (Slapl)v"'a(Snvp’n))a

where N, T, K are pairwise disjoint alphabets, with K = {Q1,...,Q,}, S; €
N, and P; are finite sets of rewriting rules over N UT U K,1 < 1 < n; the
elements of NV are nonterminal symbols, those of T' are terminals; the elements
of K are called query symbols; the pairs (S;, P;) are the components of the
system. Note that the query symbols are associated in a one-to-one manner
with the components. When discussing the type of the components in the
Chomsky hierarchy, the query symbols are interpreted as nonterminals.

For (z1,...,2,), (Y1,--.,Yn), with z;,y; € (NUT U K)*,1 < i < n (we call
such an n-tuple a configuration), and x; ¢ T*, we write (z1,...,2,) =
(y1,---,yn) if one of the following two cases holds:

(i) |zslk =0forall1 <i<m;thenz; =p y; orz; =y, € T*,1 < i < n;

(ii) there is 4,1 < i < n, such that |z;|x > 0; we write such a string z; as
T = 21Qi, 22Qiy - - - 21Qi 2141,
fort>1,2; € (NUT)*, 1< j <t+1;if [2;|x = 0forall 1 < j <t, then
Yi = 2104y 22Ty - - - Z4Ti, 2441,

land y;; = S;;,1 < j < 1]; otherwise y; = x;. For all unspecified 7 we have
Yi = Zy-

Point (i) defines a rewriting step (componentwise, synchronously, using one
rule in all components whose current strings are not terminal); (ii) defines a
communication step: the query symbols @);; introduced in some z; are replaced
by the associated strings z;;, providing that these strings do not contain further
query symbols. The communication has priority over rewriting (a rewriting
step is allowed only when no query symbol appears in the current configu-
ration). The work of the system is blocked when circular queries appear, as
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well as when no query symbol is present but point (i) is not fulfilled because
a component cannot rewrite its sentential form, although it is a nonterminal
string.

The relation =, considered above is said to be performed in the returning
mode: after communicating, a component resumes working from its axiom. If
the brackets, [and y;, = S;;,1 < i < 1], are removed, then we obtain the non-
returning mode of derivation: after communicating, a component continues the
processing of the current string. We denote by =, the obtained relation.

The language generated by I is the language generated by its first component,
when starting from (S, ...,S,), that is
LiT)={w € T* | (S1,---,5) =} (w,q9,...,an),
foroy € ( NUTUK)",2<i<n}, fe{rnr}
(No attention is paid to strings in the components 2, ..., n in the last configu-

ration of a derivation; moreover, it is supposed that the work of I' stops when
a terminal string is obtained by the first component.)

A PC grammar system is said to be centralized if only the master component
can introduce query symbols, and non-centralized otherwise.

PC grammar systems as above communicate on request. A class of parallel
communicating grammar systems with communication by command has been
considered in [2]. In such a system, each component has an associated regular
language. In any moment, each component sends its current sentential form
to all other components, but the transmitted string is accepted only if it is
an element of the regular language associated with the receiving component.
Thus, these regular languages act as filters, controlling the communication in
a way similar to the control of derivations in conditional grammars.

We do not present here formally this variant of PC grammar systems and refer
to [2] for details.

Example 12. Consider the PC grammar system

' = ({S1,52,5:},{Q1,Qs,Qs},{a,b,c}, (S1, P1), (So, P»), (S3, P5)), with
Py ={S; — aS1,51 = aQ2, So — bQ3, S3 — c},
Py = {S; — bSs},
Py = {S3 — ¢Ss}.

A typical derivation in I' proceeds as follows:
(S1,S89,853) = (a"S1,b"S,,c"S3), for some n > 0,
(@"1Qq, b1 Sy, "F1S,)
(@S, Sy, H1S))
=, (a"T"2Q3, bS,, " 12Ss)
(a™ 1" 2" 285 bSy, S3)
(

a2 %Sy, ¢Ss).
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Therefore,
LT(F) — {anbn+lcn+3 ‘ n > 1}’

which is not a context-free language. Note that the generated language is the
same in the non-returning mode (each component sends only once its string
to the master) and that the system is centralized and regular.

We denote by NCPC, X the family of languages generated by PC grammar
systems with at most n > 1 components, with rules of type X € {REG,CF},
centralized (indicated by C) and non-returning (indicated by NN); when non-
centralized systems are used we remove the symbol C', and when returning
systems are used we remove the symbol N; when no bound on the number of
components is imposed we replace the subscript n by x*.

Also in this case we only recall a few results about the generative capacity of
these systems:

1. Y,REG — LIN # 0, Y,LIN — CF # . for all n. > 2,
Y,REG — CF # (, for all n > 3, and for all Y € {PC,CPC, NPC,
NCPCY,

Y,REG — CF #{, foralln > 2, and Y € {NPC, NCPC},
LIN — (CPC.REG U NCPC,REG) # 0,

CPC,REG C CF, PC,REG C CF,

LIN c PCL,REG,

CPC,REG C MAT,

PC,CF = NPC,CF = RE.

NS ok N

. On the difference between context-sensitive and recursively enumer-
able languages. At the first sight, there is a “big difference” between the
family of context-sensitive languages and that of recursively enumerable lan-
guages, between the power of grammars using erasing rules and A-free gram-
mars. However, if we closely examine this relationship, then we find that this
difference is not so large. For instance, the following result is valid:

Theorem 9. For every language L C T*,L € RE, there are L' € CS and
c1,00 ¢ T, such that L' C L{c;}{e2}*, and for each w € L there is i > 0 such
that weycy, € L', (Thus, L is equal to L' modulo a tail of the form ¢;c} for
some 7 > 0.)

Corollary 2. (i) Each recursively enumerable language is the projection of a
context-sensitive language.

(ii) For each L € RE there is a language Ly € CS and a regular language Lo
such that L = Ly /Ls.
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Of course, the assertions above are valid also in a “mirrored” version: with
L' C{c2}*{c1}L in Theorem 9, and with a left quotient by a regular language
in point (ii) of Corollary 2.

These results prove that the families RE and C'S are “almost equal,” the
difference lies in a tail of arbitrary length to be added to the strings of a
language; being of the form ¢;cb,4 > 1, this tail carries no information other
than its length, hence from a syntactical point of view the two languages L
and L' in Theorem 9 can be considered indistinguishable.

Intuitively speaking, in order to obtain a device of the power of type-0 gram-
mars (of Turing machines, computationally complete), it is sufficient to have
(i) context-sensitivity and (ii) erasing. Of course, this is a very general for-
mulation. For instance, we have to be careful what context-sensitivity means.
As we will see when presenting the splicing operation, it is not sufficient to
“sense the neighborhoud” of the site where we process a string, but to have
“enough context-sensitivity to send signals at an arbitrarily long distance”. In
its turn, the erasing capability should be sufficient in order to be able to use
an arbitrarily large workspace and to delete the useless symbols at the end of
a computation.

Admitedly, these considerations are rather vague, but the reader will better
understand them when looking for characterizations of recursive enumerability
in any given framework (dealing with strings).

. Universal Turing machines and type-0 grammars. A computer is a
programmable machine, able to execute any program it receives. From a the-
oretical point of view, this corresponds to the notion of a universal Turing
machine, and, in general, to the notion of a machine which is universal for a
given class, in the following sense.

Consider an alphabet 7" and a Turing machine M = (K,V, T, B, sq, F,§). As
we have seen above, M starts working with a string w written on its tape
and reaches or not a final state (and then halts), depending on whether or
not w € L(M). A Turing machine can be codified as a string of symbols
over a suitable alphabet. Denote such a string by code(M). Imagine a Turing
machine M, which starts working from a string which contains both w € T

and code(M) for a given Turing machine M, and stops in a final state if and
only if w € L(M).

Such a machine M, is called universal. It can simulate any given Turing
machine, providing that a code of a particular machine is written on the tape
of the universal one, together with a string to be dealt with by the particular
machine.

The parallelism with a computer, as we know the computers in their general
form, is clear: the code of a Turing machine is its program, the strings to be
recognized are the input data, the universal Turing machine is the computer
itself.
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Let us stress here an important distinction, that between computational com-
pleteness and universality. Given a class C of computability models, we say
that C is computationally complete if the devices in C can characterize the
power of Turing machines (or of any other type of equivalent devices). This
means that given a Turing machine M we can find an element C' in C such that
C is equivalent with M. Thus, completeness refers to the capacity of covering
the level of computability (in grammatical terms, this means to generate all
recursively enumerable languages). Universality is an internal property of C
and it means the existence of a fixed element of C which is able to simulate
any given element of C, in the way described above for Turing machines.

The idea of a universal Turing machine was introduced by Turing himself, who
has also produced such a machine. Many universal Turing machines are now
available in the literature.

Given a Turing machine M we can effectively construct a type-0 gram-
mar G such that L(G) = L(M) as follows. Take a Turing machine M =
(K,V,T, B, sy, F,0) and construct a non-restricted Chomsky grammar G work-
ing as follows: starting from its axiom, G nondeterministically generates a
string w over V, then it makes a copy of w (of course, the two copies of w are
separated by a suitable marker; further markers, scanners and other auxiliary
symbols are allowed, because they can be erased when they are no longer nec-
essary). On one of the copies of w, G can simulate the work of M, choosing
nondeterministically a computation as defined by 9; if a final state is reached,
then the witness copy of w is preserved, and everything else is erased.

Details of such a construction can be found in [9], as well as in the prerequisites
chapter of [6].

Applying this construction to a universal Turing machine M,, we obtain
a unversal type-0 Chomsky grammar G,, a grammar which is universal in
the following sense: the language generated by G, consists of strings of the
form, say, w+#tcode(M), such that w € L(M). (We can call the language
{w#code(M) | w € L(M)} itself universal, and thus any grammar generating
this language is universal.) However, we are interested in a “more grammati-
cal” notion of universality, and this leads to the following definition.

A triple G = (N, T, P), where the components N, T, P are as in a usual Chom-
sky grammar, is called a grammar scheme. For a string w € (NUT')* we define
the language L(G,w) = {z € T* | w =* x}, the derivation being performed
according to the productions in P.

A universal type-0 grammar is a grammar scheme G, = (N, T,, P,), where
N,, T, are disjoint alphabets, and P, is a finite set of rewriting rules over
N, UT,, with the property that for any type-0 grammar G = (N,T,,S, P)
there is a string w(G) such that L(G,,w(G)) = L(G).

Therefore, the universal grammar simulates any given grammar, providing
that a code w(G) of the given grammar is taken as a starting string of the
universal one.
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There are universal type-0 grammars in the sense specified above. A concrete
construction can be found in Chapter 3 of [6].

A universal grammar G, can be constructed by encoding in the “type-0 gram-
mars programming language” the very way of using a grammar in a derivation
process: choose a rule, remove an occurrence of its left hand member, intro-
duce instead an occurrence of its right hand member, check whether or not a
terminal string is obtained.

For the membrane computing area it is important to note that when a charac-
terization of recursively enumerable languages/numbers is obtained in a con-
structive manner (with the construction started from Turing machines or from
Chomsky type-0 grammars), the universality is transferred “for free” from Tur-
ing machines/type-0 grammars to membrane systems (the same assertion is
true for any type of computing devices). Thus, computational completeness
directly means universality, hence programability. (There is a question here,
about what means the code of a membrane system and how it is introduced in
an universal system; the answer is always provided by the construction from
the proof of the completeness result.)

Another important observation is that there is no natural definition of univer-
sality, hence no universality result, for levels of the Chomsky hierarchy other
than the type-0 grammars (Turing machines). This implies the fact that when
having a new computing machinery, in order to have a programmable device,
we need a machinery which is computationally complete (hence containing
“enough” context-sensitivity and “sufficient” erasing possibilities).

. Splicing, insertion-deletion, context adjoining. Rewriting is only one
(fundamental and well-known) operation by which we can process strings (in
particular, in the membrane computing area). In formal language theory there
are many other string operations, some of them inspired from the very area
where the membrane computing has its origins, the biology. This is the case
with the splicing operation, considered in 1987 by T. Head, as a formal counter-
part of the recombination of DNA molecules under the influence of restriction
enzymes. Comprehensive details can be found in [6], hence we recall here only
a few ideas.

Consider an alphabet V' and two symbols #,$ not in V. A splicing rule over
V is a string r = uy#uoSusftuy, where uq, uq, us, ug € V*. For such a rule r
and for z,y, w, z € V* we define

(33; y) Fr (wa Z) iff z=mxuiuszs, Yy = yrususye,
W = T1U1U4Y2, Z = Y1U3U2T2,

for some x1,x9,y1,y2 € V™.

(One cuts the strings z,y in between uy, us and ug, ug, respectively, and one
recombines the fragments obtained in this way.)
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Based on this operation, one can define a language generating device as follows.
First, the operation is extended to languages. An H scheme is a pair ¢ =
(V,R), where V is an aphabet and R C V*#V*§V*#V* is a set of splicing
rules. For an H scheme ¢ and a language L C V* we define

o(L) = {zeV"|(z,y) F (w,2) or (z,y) Fr (2, w),
for some z,y € L, and r € R},
o’(L) = L
(L) = (L) Ua(a'(L)), fori >0,
o*(L) = L>J()ai(L).

(Thus, o*(L) is the closure of L under the splicing with respect to the rules
from R.)

An ezxtended H system is a construct v = (V, T, A, R), where V is an alphabet,
T CV (terminal alphabet), A C V* (axioms), and R C V*#V*$V*#V* is a
set of splicing rules over V. The language generated by -y is defined by

L(y) =0 (A) NT7,

where o = (V, R) is the underlying H scheme associated with ~.

For two families F'Li, F L, of languages, we denote by EH(F Ly, FLy) the
family of languages L(vy) generated by H systems v = (V,T, A, R) with A €
FL, and R € FL, (note that the splicing rules are written as strings, hence it
makes sense to speak about the type of the “language” L in a given hierarchy
of languages).

The following results are basic in the splicing area:

1. EH(REG,FIN) = REG, EH(CF,FIN) = CF.
2. EH(FIN, REG) = RE.

Therefore, using a finite set of splicing rules, when starting from a regular
language we get only regular languages. This is a good illustration of the
discussion about the context-sensitivity and the erasing needed for obtaining
the power of Turing machines: splicing is context-sensitive, because we cut the
strings in a given context, it also has erasing, but they are not sufficient. For
instance, it is clear that by cutting and recombining fragments of strings we
loose information about the fragments, we cannot send signals at long distance.

However, there are more than one dozen of controlled H systems, with rather
weak regulations about the use of the splicing rules, which can characterize
RE; the feeling is that one needs rather weak additional context-sensitivity
features in order to lead H systems to computational universality (and this is
the case also when using the splicing in the P systems area).

Other operations with strings investigated in formal language theory mainly
with a motivation from linguistics are those dealing with inserting or adjoining
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strings or pairs of strings to current strings; dually, single strings or couples of
strings can be deleted from current strings.

For instance, an insertion rule is of the form (u, z,v), with the meaning that a
string w = wyuvwsy is transformed by such a rule to w' = wiuzrvw, (the string
x was inserted in the context (u,v)). A rule of the same form can be used in
the deletion manner: from z = zjuzvz; we pass to 2’ = zjuvzs (the substring
x was deleted from the context (u,v)). Now, an insertion-deletion system can
be defined as a construct v = (V,T, A, I, D), where V is an alphabet, T C V
(terminal alphabet), A C V* (a finite set of axioms), and I, D are finite sets
of insertion and deletion rules, respectively. The generated language consists
of all strings over 7 which can be obtained by starting from the strings from
A and using iteratively rules from I and from D.

A variant of interest is that of Marcus contextual grammars, where one deals
with pairs of strings, inserted or deleted from current strings. We only present
here the so-called internal contextual grammars with selection, which are con-
structs of the form G = (V, A, P), where V is an alphabet, A is a finite set of
strings over V' (axioms), and P is a finite set of pairs of the form (C, (u,v)),
with C C V* and (u,v) C V* x V*; C is called the selector and (u,v) is called
the context of the rule (C, (u,v)).

For two strings w,z € V* we write w = z if w = wizws, 2 = wiurvw,,
for some (C, (u,v) € P, with z € C, and wy,ws € V* (the context (u,v) is
adjoined to the string  from the selector C' associated with the context). The
language generated by G is defined by

L(G)={2z€ V" | w =" z for some w € A}.

Details about insertion-deletion systems and about Marcus contextual gram-
mars (of various forms: for instance, in the external variant, the contexts are
always adjoined at the ends of the processed string) can be found in many
places, in particular, in [5] and [8].
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