On P Systems with Global Rules

Andrei Paun
Department of Computer Science, University of Western Ontario
London, Ontario, Canada N6A 5B7
E-mail: apaun@csd.uwo.ca

Abstract. We prove here that the P systems with the same rules associated to all membranes
(we say that we have global rules) are computationally universal. This is proved for two types of
P systems: splicing P systems (in the form considered in [9]) and rewriting P systems (defined in
[7]). For the splicing P systems we also try to minimise the “diameter” of the used system, while
in the case of rewriting P systems we show that two membranes are enough for universality.
This improves the result from [7] where three membranes were used.

1 Introduction

P systems are distributed computing devices inspired from the functioning of alive cells: in the
regions defined by a membrane structure one places objects (in the present paper they are considered
strings over a given alphabet), and rules for processing these objects. In the basic model, as
introduced in [7], with each region one associates a (possibly) different set of rules. A natural
variant is to consider the case when the rules are not localized, but a unique set of rules exists (a
“global” set), which are used in all regions of the system.

We investigate here the cases when the string-objects are processed by rewriting (by means of
context-free rules) and by splicing (a model of the recombination of DNA molecules, [4]).

It is known (see [7], [9]) that in the case when each region has the set of rules, rewriting P
systems (with three membranes [7]) and splicing P systems (with two membranes, [9], [3]) are
computationally universal, they generate all recursively enumerable languages. At the first sight,
working with a unique set of rules is a strong restriction, but as we will prove below, we still get
universality. This is true for both rewriting and splicing P systems. Again, in both cases two
membranes are sufficient. For splicing P systems we also minimise the diameter of the used rules
(the length of strings involved in the splicing rules).

We want to emphasize here a common feature of splicing and rewriting P systems (which is
considered here for the first time for rewriting P systems): because we use a terminal alphabet for
selecting among the strings sent out of the system those which belong to the language generated,
one does not need to account only halting computations and to introduce a (terminal) string in the
language only if the computation halts. (The use of halting computation is essential in the case of
symbol-objects, when we count the objects leaving the system, and a stop calculation is necessary,
but not in the case of string-objects.). This slightly changes the proof techniques, because instead
of introducing trap rules of the form Z — Z, for running a “wrong” computation forever, we have
to make sure that a nonterminal symbol is introduced in a sentential form so that it will never lead
to a terminal string.

2 Basic Definitions

We will first remind the splicing operation introduced in [4] as a formal model of the DNA recom-
bination under the influence of restriction enzymes and ligases.

A splicing rule (over an alphabet V) is a string r = uy#uoSus#ug, where uq,ug, us,uqs € V*
and #,$ are two special symbols not in V. (V* is the free monoid generated by the alphabet V'
under the operation of catenation; the empty string is denoted by A; the length of z € V* is denoted
by |z].)

For z,y,w,z € V* and r as above we write

(,y) bFr (w,2) ff = =z1uu2z2, ¥ = y1ususyo,
W = T1U1U4LY2, 2 = Y1U3U2T2,

for some x1, z2,y1,y2 € V*.

We say that we splice z,y at the sites ujus, usug. These sites encode the patterns recognized by
restrictions enzymes able to cut the DNA sequences between uq, us, respectively between ug, u4.
Let us now pass to splicing P systems, the object of our investigation.
We identify a membrane structure with a string of correctly matching parentheses, placed in a
unique pair of matching parentheses; each pair of matching parentheses corresponds to a membrane.
A P system is a membrane structure with multisets of objects placed in its regions and provided
with evolution rules for these objects. We define here the splicing P systems, in the variant we
investigate in this paper (and later we will see also the rewriting P systems).

A splicing P system with global rules (of degree m,m > 1) is a construct
M= (V,T,u,Li,...,Lmn,R),
where:
(i) V is an alphabet; its elements are called objects;
(ii) T C V (the output alphabet);

)

(iv) p is a membrane structure consisting of m membranes (labeled with 1,2,...,m);

(v) L;,1 <1 <m, are languages over V associated with the regions 1,2,...,m of y;
)

(vi) R is a finite set of evolution rules given in the following form: (r = uj#usSus#tus; tary, tars),
where r = u1#usSuz#u4 is a usual splicing rule over V' and tary,tary € {here,out} U {in; |
1<j7<m}.

Note that, as usual in H systems, when a string is present in a region of our system, it is assumed
to appear in arbitrarily many copies (any number of copies of a DNA molecule can be obtained by

amplification).
Any m-tuple (My,..., My,) of languages over V is called a configuration of II. For two con-
figurations (M1, ..., My,),(M],..., M} of Il we write (M,...,My) = (M{,...,M],) if we can

pass from (M,...,My,) to (M{,...,M],) by applying the splicing rules from R, in parallel, to
all possible strings from the corresponding regions, and following the target indications associated
with the rules. More specifically, if z,y € M; and (r = ui#uoSus#ug, tary,tare) € R such that

we can have (z,y) b, (w,z), then w and z will go to the regions indicated by tari,tare, respec-
tively. If tar; = here, then the string remains in M;, if tar; = out, then the string is moved to
the region immediately outside the membrane i (maybe, in this way the string leaves the system),
if tar; = iny, then the string is moved to the region k, providing that this is immediately below;
if not, then the rule cannot be applied. Note that the strings z,y are still available in region M;,
because we have supposed that they appear in arbitrarily many copies (an arbitrarily large number
of them were spliced, arbitrarily many remain), but if a string w, z is sent out of region i, then no
copy of it remains here.

A sequence of transitions between configurations of a given P system II, starting from the initial
configuration (L1, ..., Ly), is called a computation with respect to II. The result of a computation
consists of all strings over T' which are sent out of the system at any time during the computation.
We denote by L(IT) the language of all strings of this type. We say that L(II) is generated by II.

Note two important facts: if a string leaves the system but it is not terminal, then it is ignored;
if a string remains in the system, even if it is terminal, then it does not contribute to the language
L(II). It is also worth mentioning that we do not consider here halting computations. We leave
the process to continue forever and we just observe it from outside and collect the terminal strings
leaving it.

We denote by SPLG(tar, m,p) the family of languages L(II) generated by splicing P systems as
above, of degree at most m, m > 1, and of depth at most p,p > 1, and with global rules. (The depth
of a P system is equal to the height of the tree describing its membrane structure.) If all target
indications tary, tary in the evolution rules of a P system are of the form here, out, in, then we say
that II is of the i/o type; the strings produced by splicing and having associated the indication in
are moved into any lower region immediately below the region where the rule is used. The family
of languages generated by P systems with this weaker target indication and of degree at most m
and depth at most p is denoted by SPLG(i/o,m,p).

We define the diameter of a splicing P system II = (V,T, u, L1, ..., Ly, R), in a similar way as
in the case of extended H systems ([5]), by dia(IT) = (n1,ng,n3,n4), where

n; = max{|u;| | uiFHuSus#us € R}, 1 <3< 4.

We denote the family of languages generated by P systems with the weaker target indication
here, out, in, of degree at most m and depth at most p, with global rules and with diameter
(n1,n9,n3,n4) by SPLG(i/0,m,p, (n1,n2,n3,Mn4)).

The following auxiliary result is easy to be proved.

Lemma 2.1 SPLG(i/o,m,p,(n1,n2,n3,n4)) = SPLG(i/0o,m,p, (ns,ns,n1,n2)), for all m,p >1
andn; >0,1<1<4.

Let us now introduce the second model of P systems discussed here:
A rewriting P system is a construct:

II= (VaTalu'aLla"' aLVH (Rlapl)a' R (Rnapn))a

where V is an alphabet, 7' C V is the terminal alphabet, u is a membrane structure, Lq,..., Ly,
are finite languages over V, R1,..., R, are finite sets of context-free evolution rules, and p1, ..., p,
are partial order relations over Ry,..., R,, respectively.

The rules are provided with indications on the target membrane of the produced string, and
always we use only context-free rules. Thus, the rules are of the form

X — v(tar),

where tar € {here, outU{in; | 1 < j < n}, with the obvious meaning: the string produced by using
this rule will go to the membrane indicated by tar.

The language generated by a system II is denoted by L(II) and it is defined as follows: we
start from an initial configuration of the system and proceed iteratively, by transition steps done
by using the rules in parallel, to all strings which can be rewritten, obeying the priority relations
relative to the membranes, and collecting the terminal strings sent out of the system during the
computation.

Note that each string is processed by one rule only, the parallelism refers here to processing
simultaneously all available strings by all applicable rules. So, even if we can apply more than one
rule to a string, only one of the possible rules is applied. If we have priorities, then the high priority
rule “forbids” the application of a low priority rule.

For examples and properties of rewriting P systems we refer the reader to [7].

We say that such a system has global rules iff Ry = Ry = ... = R, = R and a partial order
relation p over R is given; then we write the system in the following form:

I'= (K”aLla"'aLnaR’p)'

We denote by RPL,(Pri) the family of languages generated by rewriting P systems of degree
at most n,n > 1, using priorities; and with RPLG,(Pri) the family of languages generated by
rewriting P systems of degree at most n, with priorities and having global rules.

3 Splicing P Systems

We prove now that the splicing P systems with global rules and only two components are compu-
tationally universal:

Theorem 3.1 SPLG(i/o,2,2) = RE.

Proof: Let G = (N, T, S, P) be a type-0 Chomsky grammar and let B be a new symbol. Assume
that NUT U{B} = {a1,...,an} and that P contains m rules, u; — v;,1 < i < m. Consider also
the rules upm4j; — vm4j, 1 < J < n, for upij = vy = .

We construct the splicing P system (of degree 2):

O=(V,T,u,L1,Ls,R= R UR"),
V=NUTU{B,X,X',Y,Y' 21,25, Z!} U{X; | 0<i <n+m}U{Y; |0 <i<n+m),
n=[1lolol1>
Li={Z!, X' 21, Z: Y'Y U{Z,Y; |0 < i <n+m)U{X0;Z1 |1 <i<n+m),
Lo={XSBY,X 75, 2:Y}U{Z:Y; | 1 <i<m+n}U{XiZ | 0<i<m+n—1},
R'={(X;vi#Z:8X#; in, out), (a#Y;$Z1#Y;_1; in, out) |1 <i<m+mn,
a € NUTU{B}}

U{(#Yo$Z1#Y"; in, out), (Xo#$X'#7Z1; out, here) |« € NUT U{B}}
U{(#BY$Z|#; here, out), (X#3$#Z;; out, out)
R'"={(a#u;Y $Z2#Y;; out, here), (X; #a$X;_1# Zo; here,out) | 1 <i < m +n,
a€ NUTU{B}}
U{(X'#8X#Zy; here, here), (#Y'$Zo#Y; out, here)}.

The idea of this proof is the “rotate-and-simulate” procedure, as used in many proofs in the
H systems theory. Here both the simulation of the rules in G and the circular permutation of
strings are performed in II in the same way: a suffix u of the current string is removed and the
corresponding string, v, is added in the left end of the string. For a rule v — v from P, we simulate
a derivation step in G; while for a symbol in N UT U {B} we have one symbol “rotation” of the
current string (u = v).

In the end of a computation we want to have the word in the right permutation, so we have
to mark the beginning of the word. For this purpose we use the new letter B which marks the
beginning of the sentential form of G. For instance, if Xw;Bw.Y is produced in II, this means
that in G we have the word wows.

Let us see in more detail the work of the system.

The “main” axiom is X SBY’; we will always process a string of the form Xw; BwsY (the axiom
is of that form). We replace a suffix u;Y" of this word with ¥; (in region 2) and the prefix X with
X;v; (in region 1). Then we will decrease repeatedly the subscripts of Y; and X; by one (each time
the string is sent to the other membrane). In the end we will replace Yy with Y and X, with X
(this means that ¢ = j; so we simulated the production u; — v;). In this way we can simulate the
productions from P (using the splicings that model u; — v;, 1 < ¢ < m) and rotate the string
(using the splicings that model u; — v;, m+1 <i<m+n).

In the end, in membrane 1, we delete the markers B and Y together (to be sure that we have
the right permutation of the word) and finally we delete the marker X and send the string out.
Thus, we get L(G) C L(II).

Now we will prove the converse inclusion. We will start observing that the rules from the set R’
can only be applied in membrane 1 and the rules from R” can only be applied in membrane 2: To
prove this, first observe that the rules with a target in can only be applied in the outer membrane
(membrane 1). Because of this and because the “by products” of a splicing in membrane 1 are
expelled from the system, the special characters Z1, and Z; can never reach membrane 2. Because
the rest of the rules from R' have always either Z; or Z] in their pattern, we obtain that the rules
from the group R’ cannot be applied in membrane 2.

On the other hand, the symbol Z; can reach membrane 1 if we have two rules u; — v, u; — v;
in G such that u; = zu;, z € {N UT}T. In this case, using the rule (a#u,;Y $Zo#Y;; out, here),
the string ZoxY; will go into membrane 1, but it cannot enter any more splicings there.

One can also notice that we send out many strings from the first membrane, but these strings
have at least a marker Z;, X, Y (or variants of them with subscripts and/or primed). The only
exception is the following splicing rule: (X#$#Z!; out, out). Of course, the first string produced
by this splicing rule contains the markers X and Z], but the second string can be a terminal one.
So, only this rule can produce a string in the language of the system.

We prove now that nothing outside of L(G) is produced.

Suppose that we start in the first membrane. The rule (a#Y;$Z1#Y;_1;in,out) cannot be
applied because we don’t have an axiom that has aY; a subword (« € NUT'), and later we will have
only the words X;wY; that satisfy this condition; so this rule will be applied only to these strings.
The same discussion applies to the rule (a#Yy$Z1#Y";in, out). The rule (Xo#$X'#Z; out, here)
cannot be applied (we don’t have Xy now in the first membrane), and later X can enter this
membrane only in the word XpwY;, so also this rule cannot produce anything wrong.

If we apply the rule (#BY$Z|#; here, out) to the strings XSBY, Z{, then we will pro-
duce the string XS in membrane 1. This string (X.S) can enter a splicing using the rule
(X;vi# 718X #; in, out) and then the string X;v;S gets in the second membrane. There the
subscript of X is decreased by one (using X;#a$X; 1#Z5; here,out)) and then the string X; 1.5
gets in the first membrane. Here this string cannot enter any more splicings. If we apply first the
rule (X#8#Z1; out, out), then the strings are sent out, and because they contain special symbols,
they are not in the language of the system.

Thus, we have to use first a rule (X;v;#Z$X#; in, out).

If we start in the second membrane, then the last two rules cannot be applied (we don’t have X'
or Y’ here yet), while the output of the first rule are the same strings that have entered the splicing,
or strings which cannot enter any new splicing. The rule (X;#a$X; 1#Zs; here,out) cannot be
applied to other strings but X;wY and X;wY;. If it is applied to X;wY’, then the string X;_jwY
reaches membrane 1 and there cannot enter any more splicings.

Consequently, we have to replace X by Xjv; in membrane 1 and then to cut u;Y and replace it
with Y; in membrane 2. The string X;v;wY; gets in membrane 1, where the only possibility is to
apply the rule (a#Y;$Z1#Y;_1; in, out). The string X;v;wY;_; gets in membrane 2, where the
only possibility is to apply the rule (X;#a$X;_1#Zs; here, out), so the string X; jv,wY;_1 gets
in membrane 1. We iterate the process until at least one of the subscripts of X or Y is 0.

If we got Xy, then we decreased the subscript of X in membrane 2 and sent the string Xov;Y;_;
in membrane 1. Here we have two possibilities: 7 # 4 or j = 1.

If 7 # 1 then j — i # 0, so we can decrease the subscript of Y and send the string in membrane
2. But here the string Xov;wY; ; 1 can enter no further splicings. Before decreasing the subscript
of Y, in membrane 1 we can also apply the splicing rule (Xo#$X'#7Z1; out, here); the string
X'vjwY_; is sent to membrane 1 and we continue as before. In this case in membrane 2 we can
replace X' by X using the rule (X'#$X#Z>; here, here) and the string Xv;Y;_;_1 cannot enter
any other splicings so it remains in membrane 2.

If = 1, then the only productions from region 1 that can be applied are (a#Yy$Z1#Y"; in, out)
and (Xo#$X'#7Z1; out, here). If we apply the first one, then the string Xov;wY’ is sent to
membrane 2, here we can only apply the rule that replaces Y’ with Y, so the string Xov,wY gets
in membrane 1. This string will never lead to a terminal string because we cannot delete the left
marker (we can replace Xy with X’ but the string remains in this membrane and that marker
cannot be deleted).

If we start with the rule (Xo#3$X'#Z1; out, here), then we get the string X'v;wYy. The
only possibility to continue is to apply (a#Yo$Z1#Y'; in, out) and the string X'v;wY’ gets in
membrane 2. If we don’t replace here X’ with X, then again the string that gets into membrane 1
cannot lead to a terminal string. So first we replace X' with X (using the rule X'#$X#Z5) and
then we replace Y’ by Y by using the rule (#Y'$Z2#Y; out, here). In this way we send the string
Xv;wY in membrane 1 and we can perform another step of rotating the word or simulating the
rules from P.

Therefore, the computations in II correctly simulate rules in G or circularly permute the
string. In the end we remove all markers from a string using (#BY$Z;#; here, out) and
(X#$4#77; out, out).

In this way we get that L(II) C L(G). O

In the following we will try to minimise the diameter of the used splicing P systems with global
rules (to this aim, one further membrane will be necessary):

Theorem 3.2 SPLG(i/o,3,3,(1,2,1,0)) = SPLG(i/o,3,3,(1,0,1,2)) = RE.

Proof: We will only prove that SPL(i/0,3,3,(1,2,1,0)) = RE, the other equality follows from
Lemma 2.1.

Let G = (N,T,S, P) be a type-0 Chomsky grammar in the Kuroda normal form, (that is P
consists of context-free rules of the form A -z, A€ N, z € (NUT)*, |z| < 2, and non-context-
free rules of the form AB — CD, A,B,C,D € N) and let B be a new symbol. Assume that
NUTU{B} ={ai,...,a,} and that P contains m rules, u; = v;,1 <4 < m. Consider also the
rules U4 — Vmyj, 1 < J < n, for upyj = vipg; = a;.

We denote by P; the set of context-free rules considered above, and with P, the rest of the
rules. One can see that the rules u,,; = vpm4j,1 < j < n arein P.

We construct the splicing P system (of degree 3):

M = (V.T,u, L1, Lo, L3, R = R'UR"UR"),
V = NUTU{B,X, XY, Zx, Zx:, 2y, Zx, Z\} U{Yi, Zy, | 0 < i < n+m}
) {X’iaZXpZ’thiI;ZYi’ ‘ 1<:< m+n}7

Bmo= [1[2[3]3]2]1a
Li = {XSBY,Z),Z3}U{ZyY; | 0<i<n+m}U{ZyY] |1<i<n+m},
Ly = {XZx,X'Zx}U{XwiZi|1<i<m+n}U{X;Zx, |1 <i<m+n-—1},
Ly = {ZyY},
R = {(#uwY$Zy.#;in,out),| u; = v; € P}
U {(C#DY$Zy:# here,out), (#CY/$Zy.#;in,out) | u; = CD — v; € P»}
U {(a#Y;$Zy,_#;in,out) |1 <i<n+m, a € NUT U{B}}
U {(a#BYS$Z,#; here,out), (#2Z\8X#;out,out) |« € T},
R" = {(o#Z;$X#;0ut,in) |[1<i<n+m, a € NUT}
U {(Xici#Zx,_ $Xi#;0ut,in) |2 <i<n+m}
U {(X'#Zx:8X1#;in,in), (X#Zx$X'#;0ut,in)},
R" = {(a#Yo$Zy#;o0ut,out) |a € NUT U{B}}.

This proof closely follows the proof of Theorem 1 from [9], with a special attention paid to the
diameter of the splicing rules and also changing the rules to be global.

We will first prove that the rules from the group R’ can only be applied in membrane 1, the
rules from R” in membrane 2 and the rules from R in membrane 3. We understand by this that
if a rule is applied not according to this, then the resulting strings can never “evolve” into terminal
strings.

First, one can observe that the symbols Zy,, Zys, Z\, Z) can only be found in membrane 1
because the axioms that contain them are all in membrane 1, and the splicing rules that can be
applied to these axioms are from the set R'. If we take a closer look to the splicing rules from R’
we can see that the “garbage” produced by a splicing rule is sent out of membrane 1, while “the
good part” is kept in the system, so always, the byproducts containing these special symbols are
expelled from the system and can never enter any more splicings. In this way we showed that the
rules from R’ can only be applied in membrane 1.

Let’s look now to the rules from the group R”: it is easy to see that these rules work at one end
of a string that enters splicing (because the special symbols Z;, X, X;, Zx,, Zx, X1, X', Zx)
appear only to one end of a string. With this observation we can conclude that the “by prod-
uct” strings resulted from splicing in membrane 2 using rules from R” are sent to membrane 3:
XZ;, XiZx, ,, X1Zx, X'Zx. But because the special form of the rules in the group R"” one can
see that no rule from this group can be applied in membrane 3 (the only possibility would be a rule
applied to the byproducts that were sent in membrane 3 from membrane 2, but it is easy to see
that the rules in R” always check the presence of a symbol on the first position (before the hash
symbol), so in this way the product of a rule cannot enter another splicing using the same rule).
In the end we conclude that the splicing rules from R” can only be applied in the membrane 2.

The only rule that is contained in R" is (a#Y0$Zy #; out, out). We will show that this rule
cannot lead to terminal strings if it is applied in membranes 1 and 2. In the beginning the symbol
Zy is only in membrane 3 (contained in the axiom Zy'Y'), so only here the rule can be applied now.
After the rule was used between waY; and Zy'Y the strings produced: waY and ZyY| are sent to
membrane 2. One can notice that the second string can only enter splicings using this rule that
produced it. In membrane 2 the rule can be applied between waYy and ZyY), so the produced
strings (which are the same as the inputs) are sent to membrane 1. But in membrane 1 the string
waYy cannot enter any more splicings (because the string starts with a variant of X and finishes
with Yj), so nothing “bad” is produced.

If the rule (from R'") is applied in membrane 1, then the produced strings will be sent out from
the system, and the nonterminal Y; will be present in both strings, so nothing is produced.

(From now on, the proof follows the proof of Lemma 2 from [6]. The sentential forms generated
by G are simulated in II in a circular permutation: Xw; Bws2Y, maybe with variants of X,Y, will
be present in a region of II if and only if wowq is a sentential form of G. Note that we can remove
the nonterminal symbol Y only together with B from a string of the form XwBY . In this way, we
ensure that the string is in the right permutation.

The simulation of rules in P and the rotation are done in the same way. Assume that some
string Xwu;Y is present in region 1. We have now two cases: if u; — v; € Pj, then we simulate right
away the rule u; — v; with a splicing rule of the form (#u;Y $Zy;,in, here). Iif u; = CD — v; € P,
then the simulation requires two steps: first we replace DY with Y] and then we replace CY] with
Y;.

So in both cases we replace the suffix u;Y with Y;, 1 <4 < m + n: initially we have here the
string X SBY. We can perform

(Xw|wY, Zy,|Y;) b (XwY;, Zy,u;Y) for u; — v; € Py,
or else,

(XwC|DY, Zy,|Y}) - (XwCY/, Zy; DY) and (Xw|CY;, Zy,|Y;) - (XwY;, Zy,CY]).

The string XwY; is sent to region 2, the “by products” are sent out and don’t enter the language
generated by II because they contain at least a nonterminal. In region 2 we can only perform
a splicing of the form (X|wY;, X;v;|Z;) b (X Z;, X;jv;wY;), for some 1 < j < n 4+ m. The string
X,vjwY; is sent back to region 1, X Z; is sent to membrane 1 and cannot enter other splicings. Now,
in region 1 the only splicing which can be applied to the string X;v,wY; is (X;v;w|Y;, Zy,_,|Y;—1) F
(XjvjwYi_1, Zy, ,Y;). The string X;v;wY;_1 is sent to region 2, while Zy;, ,Y;_; is sent out and
don’t enter the generated language. In region 2 we now decrease by one the subscript of X, using
the rule (X;|vwY;_1, Xj_1|ZXj_1) F(X;Z, X;_1vjwY;_1). We iterate this process of decreasing the
subscripts until either the subscript of X reaches 1 or the subscript of Y becomes 0.

If at some moment we reach X1, hence in region 2 we have a string X;v;wY}, then we perform
(Xi|vjwYy, X'\ Zx1) b (X1Zx, X'vjwYy) and X'vjwY} is sent to membrane 3. If k # 0, then
nothing can be done, the string is “lost”. Otherwise, Y} is replaced with Y and the string X'v;wY
is sent to region 2; X' is replaced here by X and the string Xv;wY is sent to the skin membrane.

If at some moment in region 2 we get a string X;v;wYp, for £ > 2, this string cannot be
processed in the skin membrane, hence it is “lost”. Thus, we can correctly continue only when
1 = j, hence we have passed from Xwu;Y to Xv;wY'; in this way we have either correctly simulated
a rule from P or we have circularly permuted the string with one symbol. This is true because we
cannot have “illegal” splicings: “by product” strings generated in membrane 1 are sent out, the
ones produced in membrane 2 are sent to membrane 3 (none of them containing either Yj or Zy,
hence cannot enter in splicings in membrane 3) and the “garbage” ZyY; from membrane 3 is sent
to membrane 2, where it cannot enter any splicing. Because of this fact, we know that when we
have Z with a subscript in a word entering a splicing, then that word is a axiom (and one can see
that there are not two different axioms containing Z with the same subscript).

The process of simulating a rule or of rotating the string with one symbol can be iterated.
Therefore, all derivations in G can be simulated in II and, conversely, all correct computations in
IT correspond to correct derivations in G. Because we collect only terminal strings which leave the
system, we have the equality L(G)) = L(II). It is easy to see that the diameter of the P system is
(0,2,1,0). O

4 Rewriting P Systems With Global Rules

We now pass to the second model of P systems we discuss here, rewriting P systems. First we
improve the main result from [7] about this variant, that is, we prove that two membranes are
sufficient for universality. First we consider systems with local rules.

To this aim, we need the definition of matrix grammars with appearance checking in the binary
normal form.

A matrix grammar with appearance checking, G = (N, T, S, M, F) is in the binary normal form
(Lemma 1.3.7 in [1]) if N = N7 U No U {S, {}, with these three sets disjoint, and the matrices in M
are of one of the following forms:

1. (S = XA), with X € N1, A € Ny,
2. (X >Y,A—x),with X, Y € N\,A€ Ny,z € (N2 UT)*,

3. (X—)Y,A—)T), with X,Y € N1, A € No,

4. (X - 11,A — x3), with X € N1, A € Ny, and z1, 29 € T™.

Moreover, there is only one matrix of type 1 and F' consists exactly of all rules A — { appearing
in matrices of type 3.

The symbols in Ny are mainly used to control the use of rules of the form A — x with A € No,
while 1 is a trap symbol; once introduced, it is never removed. A matrix of type 4 is used only
once, at the last step of a derivation.

Theorem 4.1 RPLy(Pri) = RE

Proof: Let G = (N,T,S,M,F) be a matrix grammar with appearance checking in the binary
normal form. For each matrix of type 4 (X — z1, A — z2), with 21,29 € T*, we also introduce the
matrix (X — X'z, A — z3), which is considered of type 4'; we also add the matrices (X' — A);
X' is a new symbol associated with X. Clearly, the generated language is not changed. We assume
the matrices of the types 2, 3, 4’ labeled in a one-to-one manner with mq, ..., my.

We construct the following rewriting P system:

IT = (V,T, u, L1, Ly, (R, p1), (R2, p2))
V=NUNU{EZ{}UTU{X;,X;| X € Ni,1<i<k},
B = [1[2]z]p
L, = {XAE}, where (S — SA) is the initial matrix of G,
Ly = 0,
R ={rq:a—a|lacV -T,a#E}
U {ro: E — A out)}
U {t;: X = Y(in) | m; : (X =Y, A — z) is a matrix of type 2}
U {t;: X = Y(in) | m; : (X =Y, A — 1) is a matrix of type 3}
U {ti: X = X/z1(in), X] = X|m; : (X = X'z, A — x9)
is a matrix of type 4'}
U{Y;,-»Y, Y/ >Y|YeN,1<i<k},
pr ={ra>r0|aeV -T,a+# E},
Ry ={ri:Y; =Y, ri: A= z(out) |m;: (X >Y,A— 1)
is a matrix of types 2 or 4}
U{ri:X] = X, ri: A— zoout) | m; : (X = X'z, A — 1)
is a matrix of type 4'}
Uipi:Yi= Y, p: Y =Y, pf A= tlout) | mi: (X 2 Y,A— 1)
is a matrix of type 3}
U {po: E — E(out)},
p2 = {r; > r;-, T >p;~', pi > 7";-, D, > 7‘;- | i # j, for all possible 7,5}
U {p! > pi, pi > po, mi > po| for all possible i}.

We will now explain the work of the system. Observe first that the rules @ — « from membrane
1 change nothing, can be used forever, and prevent the use of the rule E — A(out), which sends

10

the string out of the system. So, we can use the rule E — X only after all nonterminal symbols
have been rewritten into terminal ones.

Let us assume that in membrane 1 we have a string of the form XwFE (initially, we have the
string X AE). In membrane 1 one chooses the matrix to be simulated, m;, and one simulates its
first rule, X — Y, by introducing Y; (the subscript i keeps the information about what rule we are
simulating); and then the string is sent to membrane 2.

Let us discuss now the case of matrices of type 2: In membrane 2 we can use the ruler; : Y; — Y;
forever. The only way to exit this membrane is by using the rule A — z appearing in the second
position of a matrix of type 2 (we cannot use py : E — E(out) because r; has priority over py,
and we cannot use a rule p! because r; has again priority). Due to the priority relation py, this
matrix should be exactly m; as specified by the subscript of Y; (every other rule cannot be applied
because then r; have priority over all r; with j # i). Therefore, we can continue the computation
only when the matrix is correctly simulated (we use the rule 7).

The process is similar for matrices of type 3: The rules ¥; — Y/, Y/ — Y; can be used forever
and we remain in membrane 2. We can quit this membrane either by using a rule A — {(out) or
by using the rule £ — E(out), we cannot use a rule r; because p; > 5 and p; > r}. In the first case
the computation will never lead to a terminal string (we introduced the trap-symbol { that can
never be removed). Because of the priority relation, such a rule must be used if the corresponding
symbol A appears in the string. If this is not the case, then the rule ¥; — Y} can be used. If we
now use the rule Y/ — Y;, then we get nothing. If we use the rule E — E(out), and this is possible
because Y; is no longer present, so the higher priority rule p; cannot be applied, then we send out
a string of the form Y/wE.

In membrane 1 we replace Y; or Y] by Y, and thus the process of simulating the use of matrices
of types 2 and 3 can be iterated.

A slightly different procedure is followed for the matrices of type 4'; they are of the form
m;i: (X — X'z1, A — x2). In membrane 1 we use X — Xz (in), which already introduces the
string z1, and the string arrives in membrane 2. Again the only way to leave this membrane is by
using the associated rule A — z2(out). In membrane 1 we have to apply X; — A. If no symbol
different of FE and the terminal symbols is present, then we can apply the rule E — A(out). Thus,
a terminal string is sent out of the system.

Therefore, in the language L(II) we collect exactly the terminal strings generated by the gram-
mar G, that is L(G) = L(II). O

By appropriately modifying the proof of Theorem 4.1, we can now show that rewriting P systems
with global rules and only two components are computationally universal:

Theorem 4.2 RPLGy(Pri) = RE

Proof: We use the notations from the previous proof. Starting from the system II constructed in
the proof of theorem 4.1, we construct the following rewriting P system with global rules:

HI = (KTaﬂaLlaLQaR = Rll URIQ’pll Up,?)’

where

R| = R, with the rules Y; Y and Y] — Y changed to

11

s; 1 Y; = Y(in) and s} : Y] — Y (in), respectively,
Py = prU{ti >y, b > b > py, 6>), >, 6> py,

8i > T, 8i > Ty, 8i > Pj, 8i > Py, 8i > Dj, 8i > Py,

8; > 1y, 8; > T, 8i>pj, 8; > Py, 8 > P, s> py | foralli,j, YV},
R, = RyU{py:Y — Y(out)},
py = p2U{py >ri, py >, py >p; |i >0}

The idea of the construction is the following: one can see that all the rules from R}, with the
exception of E — A(out) and 7, : & — «, have the target indication (in), so they cannot be applied
in membrane 2. The additional priorities added to p| make sure that no rule from Rj will be
applied in membrane 1 (the rules from R/ have priority and always a rule from R) can be applied:
that is 79) (the only exception to this is the rule py that can be applied in membrane 1, but when
it is applied it sends out a string containing F, so that string will not contribute to the language,
thus the language is unchanged).

The only change in the rewriting rules was to introduce the target indication (in) to the rules
Y; - Y and Y/ — Y, but introducing this we had to add also the rule py : Y — Y to R5. As we
can see this doesn’t change the language generated by the system, so because the rules R} can only
be applied in membrane 1 and the rules from R) in membrane 2 using the previous proof we get
that L(II") = L(G), which means that RE C RPLGy(Pri). O

5 Final Remarks

We have considered rewriting and splicing P systems with global rules and we have proved that
this restriction does not decrease the generative power: characterizations of recursively enumerable
languages are obtained also in this case, likewise to the case of systems with local rules (that is,
rules associated with each membrane). This partially solves a problem formulated in [8]. The case
of P systems of other types (for instance, using symbol-objects) remains to be investigated.

We also need to improve the result about splicing P systems in what concerns the diameter of
splicing rules: Theorem 3.2 uses a system with three membranes. What is the smallest diameter
in the case od two membranes? If we start the proof of Theorem 3.1 from a type-0 grammar in the
Kuroda normal form, we get a system II such that dia(II) = (3,3,1,1). We believe that this result
can be improved.

References

[1] J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory, Springer-Verlag,
Berlin, 1989.

[2] J. Dassow, Gh. Pdun, On the power of membrane computing, Journal of Universal Computer
Science, 5, 2 (1999), 33-49.

[3] P. Frisco, Membrane computing based on splicing: improvements, Pre-proc. Workshop on
Multiset Processing, Curtea de Argeg, Romania, TR 140, CDMTCS, Univ. Auckland, 2000,
100-111.

12

[4] T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific
recombinant behaviors, Bull. Math. Biology, 49 (1987), 737-759.

[6] A. Paun, Controlled H systems of small radius, Fundamenta Informaticae, 31, 2 (1997), 185
- 193.

[6] A. Pidun, M. Piun, On the membrane computing based on splicing, Where Mathematics,
Computer Science, Linguistics and Biology Meet (C. Martin-Vide, V. Mitrana, Eds.), Kluwer,
Dordrecht, 2001, 409-422.

[7] Gh. Piun, Computing with membranes, J. of Computer and System Sciences, 61, 1 (2000),
108-143.

[8] Gh. Paun, Computing with membranes (P systems): Twenty six research topics, Auckland
University, CDMTCS Report No 119, 2000 (www.cs.auckland.ac.nz/ CDMTCS).

[9] Gh. Pdun, T. Yokomori, Membrane Computing Based on Splicing, Preliminary Proc. of Fifth
Intern. Meeting on DNA Based Computers (E. Winfree, D. Gifford, eds.), MIT, June 1999,
213-227.

[10] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag, Berlin, 1997.

13

