
P Systems with Active Membranes

Characterize PSPACE

Petr Sośık a,b,∗ Alfonso Rodŕıgues-Patón Aradas a

aUniversidad Politécnica de Madrid – UPM, Faculdad de Informática
Campus de Montegancedo s/n, Boadilla del Monte

28660 Madrid, Spain
bInstitute of Computer Science, Silesian University

74601 Opava, Czech Republic

Abstract

P system is a natural computing model inspired by behavior of living cells and
their membranes. We show that (semi-)uniform families of P systems with active
membranes can solve in polynomial time exactly the class of problems PSPACE.
Consequently, these P systems are computationally equivalent (w.r.t. the polynomial
time reduction) to standard parallel machine models as PRAM and the alternating
Turing machine.

Key words: Keywords: Natural computing, P system, PSPACE, alternating
Turing machine

1 Introduction

The computational power of P systems in active membranes was studied first
in [9], where their ability to solve NP-complete problems in polynomial time
was demonstrated. Later it was shown in [12,2] that (semi-)uniform families
of deterministic P systems with active membranes can solve also the problem
QBF (satisfiability of quantified propositional formulas) in a polynomial time.
As QBF is a classical PSPACE-complete problem, any other problem in
PSPACE can be also (after a reduction to QBF) solved in a polynomial time
in the same way.

∗ Corresponding author.
Email addresses: petr.sosik@fpf.slu.cz (Petr Sośık), arpaton@fi.upm.es

(Alfonso Rodŕıgues-Patón Aradas).

Preprint submitted to Elsevier Science 18 December 2005

Here we complete the characterization of the computational power of P sys-
tems with active membranes. We show that the class of problems solvable in
polynomial time by these P systems is exactly the class PSPACE. As a conse-
quence, these P systems satisfy the so-called Parallel Computation Thesis [6]
for a computer M :

M -TIME(TO(1)(n)) = SPACE(TO(1)(n)). (1)

Computers satisfying this thesis form the second machine class [13,4]. Among
its members there are standard models of parallel computers as SIMDAG
(known also as SIMD PRAM), APM – a model of existing vector supercom-
puters [14], P-RAM – a model of MIMD PRAM computer, alternating Turing
machine and others [4]. An interesting member is the genetic Turing machine
[11], a computational model of genetic crossing-over. It is also straightforward
that the second machine class is closed under the polynomial-time reduction.

To demonstrate that any f(n) time-bounded computation of a P system with
active membranes can be simulated in a space polynomial w.r.t. f(n), we adopt
the technique of reverse-time simulation. Instead of simulating a computation
of a P system from its initial configuration onwards (which would require an
exponential space for storing configurations), we create a recursive function
which returns the state of any membrane h after a given number of steps.
The recursive calls evaluate contents of the membranes interacting with h in
a reverse time order (towards the initial configuration). In such a manner we
do not need to store a state of any membrane, but instead we calculate it
recursively whenever it is needed.

2 Definitions

In this section we give a brief description of P systems with active membranes
due to [9] or [8], where also more details can be found. A membrane struc-
ture is represented by a Venn diagram (or a rooted tree) and is identified by a
string of correctly matching parentheses, with a unique external pair of paren-
theses corresponding to the external membrane, called the skin. A membrane
without any other membrane inside is said to be elementary. The following
example from [9] illustrates the situation: the membrane structure at Figure
1 is identified by the string

µ = [
1
[
2
[
5

]
5
[
6

]
6
]
2
[
3

]
3
[
4
[
7
[
8

]
8
]
7
]
4
]
1
.

In what follows, we interpret the membrane structure of Π as a rooted tree
and refer occasionally to its elements – membranes as nodes in this tree. The

2

'

&

$

%

'

&

$

%

º

¹

·

¸

¶

µ

³

´

#

"

Ã

!

'

&

$

%

'

&

$

%

#

"

Ã

!

1

2
3

4
5

6

7

8

t
%

%
%

@
@

@ttt
£

£
£

A
A
AA ttt

t

1

2 3 4

5 6
7

8

Fig. 1. A membrane structure and its associated tree.

membranes can be further marked with + or −, and this is interpreted as an
“electrical charge”, or with 0, and this means “neutral charge”. We will write
[
i
]+
i
, [

i
]−
i
, [

i
]0
i

in the three cases, respectively.

The membranes delimit regions, precisely identified by the membranes (the
region of a membrane is delimited by the membrane and all membranes placed
immediately inside it, if any such a membrane exists). In these regions we place
objects, which are represented by symbols of an alphabet. Several copies of the
same object can be present in a region, so we work with multisets of objects. A
multiset m over an alphabet V can be represented by any string x ∈ V ∗ (by V ∗

we denote the free monoid generated by V with respect to the concatenation
and the identity λ) such that the number of occurrences of a symbol a ∈ V in
x represents the multiplicity of the object a in the multiset m.

A P system with active membranes is a construct

Π = (V,H, µ, w1, . . . , wm, R),

where:

(i) m ≥ 1;
(ii) V is an alphabet;
(iii) H is a finite set of labels for membranes;
(iv) µ is a membrane structure, consisting of m membranes, labelled (not neces-

sarily in a one-to-one manner) with elements of H; all membranes in µ are
supposed to be neutral;

(v) w1, . . . , wm are strings over V , describing the multisets of objects placed in
the m regions of µ;

(vi) R is a finite set of developmental rules, of the following forms:
(a) [ha → v]αh ,

for h ∈ H, α ∈ {+,−, 0}, a ∈ V, v ∈ V ∗

3

(object evolution rules, associated with membranes and depending on the
label and the charge of the membranes, but not directly involving the
membranes, in the sense that the membranes are neither taking part to
the application of these rules nor are they modified by them);

(b) a[h]α1

h → [hb]
α2

h ,
for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules; an object is introduced into the membrane, maybe
modified during this process; also the polarization of the membrane can
be modified, but not its label);

(c) [ha]α1

h → [h]α2

h b,
for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules; an object is sent out of the membrane, maybe mod-
ified during this process; also the polarization of the membrane can be
modified, but not its label);

(d) [ha]αh → b,
for h ∈ H, α ∈ {+,−, 0}, a, b ∈ V
(dissolving rules; in reaction with an object, a membrane can be dissolved,
leaving all its object in the surrounding region, while the object specified
in the rule can be modified);

(e) [
h
a]α1

h
→ [

h
b]α2

h
[
h
c]α3

h
,

for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ V
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, maybe of
different polarizations; the object specified in the rule is replaced in the
two new membranes by possibly new objects; all the other objects are
copied into both resulting membranes);

(f) [h0
[h1

]+h1
. . . [hk

]+hk
[hk+1

]−hk+1
. . . [hn

]−hn
]α2

h0

→ [
h0

[
h1

]α3

h1
. . . [

hk
]α3

hk
]α5

h0
[
h0

[
hk+1

]α4

hk+1
. . . [

hn
]α4

hn
]α6

h0
,

for n > k ≥ 1, hi ∈ H, 0 ≤ i ≤ n, and α2, . . . , α6 ∈ {+,−, 0};
(division of non-elementary membranes; this is possible only if a membrane
contains two immediately lower membranes of opposite polarization, +
and −; the membranes of opposite polarizations are separated in the two
new membranes, but their polarization can change; always, all membranes
of opposite polarizations are separated by applying this rule;
if the membrane labelled h0 contains other membranes than h1, . . . , hn

specified above, then they must have neutral charges in order to make
this rule applicable; these membranes are duplicated and then become
part of the content of both copies of membrane h0).

All the above rules are applied in parallel, but at one step, an object a can be
a subject of only one rule of type (a)–(e) and a membrane h can be subject
of only one rule of type (b)–(f). In the case of rules of type (f) this means
that none of the membranes labelled h0, . . . , hn listed in the rule can be simul-
taneously subject of another rule of type (b)–(f). However, if the membrane

4

labelled h0 contains other membranes with neutral charge, they can be simul-
taneously subject of another rules and the results are copied to both copies of
membrane h0. In general, an application of rules is performed as follows:

(1) any object and membrane which can evolve by a rule of any form, should
evolve;

(2) all objects and membranes which cannot evolve pass unchanged to the
next step;

(3) if a rule of type (d), (e) or (f) is applied to a membrane, then rules of
type (a) are applied first to its objects and then the resulting objects are
further copied/moved in accordance with the (d), (e) or (f) type rule;

(4) rules of type (d), (e), (f) are applied during one step in a bottom-up
manner: first, they are applied to elementary membranes, then to their
parent membranes etc., towards the skin membrane;

(5) the skin membrane can neither be dissolved, nor divided, nor it can in-
troduce an object from outside (unless stated otherwise). Therefore, we
assume that there are only rules of types (a) and (c) associated with the
skin membrane.

The membrane structure of the system at a given moment, together with all
multisets of objects associated with the regions of its membrane structure
form the configuration of the system. The (m + 1)-tuple (µ,w1, . . . , wm) is
the initial configuration. We can pass from a configuration to another one by
using the rules from R according to the principles given above. Notice that
the depth of the membrane structure cannot grow during any computation.
The computation stops when there is no rule which can be applied to objects
and membranes in the last configuration. The result of the computation is
the collection of objects expelled from the skin membrane during the whole
computation.

In the case of P systems solving decision problems, a distinguished membrane
contains at the beginning of computation an input – a description of an in-
stance of a problem. Alternatively, the input can be supplied from outside
through the skin membrane. The result of computation (a solution to the
instance) is yes if a distinguished object yes has been expelled during the
computation, otherwise the result is no.

3 Complexity classes of P systems

“Classical” machine models run programs with an arbitrary combination of
instruction, with variables storing an arbitrary integer etc. However, when
dealing with biocomputing models, the “program” and some of its variables
are built in the structure of the system which is often not so flexible. Hence

5

it is more natural to consider families of P systems for solving computational
problems [8]. In this manner there have been defined complexity classes for
various types of P system [10]. For a decision problem A we denote by A(n)
its instances of size n.

Definition 1 Let X be a class of membrane systems and let f : N −→ N be
a total function. The class of problems solved by uniform families of X-type
P systems in time f, denoted by MCX(f), contains all problems A such that:

(1) there exists a uniform family of P systems ΠA = (ΠA(1); ΠA(2); . . .) of
type X whose members ΠA(n) can be constructed by a Turing machine
with the input n in a polynomial time.

(2) Each ΠA(n) is sound: there exists a distinguished object yes such that
ΠA(n) starting with the input A(n) expels out object yes if and only if the
answer to A(n) is “yes”.

(3) Each ΠA(n) is confluent: all computations of ΠA(n) with the same input
A(n) have the same result “yes” or “no”.

(4) ΠA is f -efficient: ΠA(n) always halts in at most f(n) steps.

Alternatively we can consider semi-uniform families of P systems ΠA =
(ΠA(A(1)); ΠA(A(2)); . . .) whose members ΠA(A(n)) can be constructed by
a Turing machine with the input A(n) in a polynomial time. Here for each
instance of A we have a special P system which therefore does not need an
input. The resulting class of problems is denoted by MCS

X(f). Obviously,
MCX(f) ⊆ MCS

X(f) for a given X and a constructible function f.

Particularly, we denote by PMCdiv-ne (PMCS
div-ne) the class of problems solv-

able by uniform (semi-uniform, respectively) families of P systems with active
membranes in polynomial time. Similarly, we denote by FAMdiv-ne (FAMS

div-ne)
the class of uniform (semi-uniform, respectively) families of these P systems.
The abbreviation “div-ne” suggests that a non-elementary membrane division
is allowed. The following relations are known [2,12]:

PSPACE ⊆ PMCdiv-ne ⊆ PMCS
div-ne. (2)

4 RAM simulation of P systems with active membranes

In this section we show that the inclusions reverse to 2 hold, too, i.e. that
each (semi-)uniform family of confluent P systems with active membranes can
solve only problems in PSPACE. Particularly, we describe how to simulate n
steps of any such P systems on a RAM-type computer (and hence also on a
Turing machine) in a space polynomial to n.

Consider a membrane system Π = (V, H, µ, w1, . . . , wm, R). For any membrane

6

'

&

$

%

¾

½

»

¼

¾

½

»

¼

¾

½

»

¼

¾

½

»

¼

¾

½

»

¼

'

&

$

%

'

&

$

%

¾

½

»

¼
¾

½

»

¼

¾

½

»

¼

¾

½

»

¼

¾

½

»

¼
f

g

h

f1

g1

h1

h2

f11

g11 g12

h11

h21 h22

=⇒ =⇒

Fig. 2. Indexing of membranes during the first two computational steps.

h of Π, we define its state S = (M, p), where M is the multiset characterizing
the content of membrane h and p is its polarization. We use the notation S.M
and S.p to refer to these two components of state.

A crucial element of our simulation is the function State(h, n) which computes
the state of any membrane h of the system Π after n-th step of computation.
If, after n-th step, the membrane h does not exist, the returned value is nil. If
it is dissolved, the returned value is dissolved. Otherwise the functions returns
the state S = (M, p) of the membrane.

Our algorithm is described in a high-level language; however, it can be trans-
lated into instructions of a RAM computer as defined in e.g. [3]. As such a
translation would be easy but cumbersome, it is left to the interested reader.

4.1 Simplified simulation without non-elementary membrane division

We assume without loss of generality that the original labeling of membranes
of Π in µ is one-to-one. Hence in the initial configuration the labels identify the
membranes uniquely. However, during the computation of Π the membranes
may be divided, keeping their original labels. Hence there may exist more
membranes with the same label. To identify membranes uniquely, we add an
index to each membrane label.

In the initial configuration, each index is an empty string. If a membrane is
not divided in a computational step, the digit 1 is added to its index. If it is
divided using a rule of type (e), the first resulting membrane has added the
digit 1 and the second membrane the digit 2 to its index. Hence, after n steps
of computation the index of each membrane is an n-tuple of digits from {1, 2}.
Notice that, as in this subsection only elementary membranes can divide, the
index of each non-elementary membrane is a string consisting of 1’s only. The
situation is illustrated at Figure 2.

7

Now we construct the above mentioned function State(hi1i2...in , n) which com-
putes the state of a membrane hi1i2...in after n computational steps of Π.

(1) If n = 0 then return the state of membrane h in the initial configuration
and exit.

(2) Calculate recursively State(hi1...in−1 , n− 1) and store it in the variable S.
(3) If S = nil or S = dissolved then return S and exit.

/* If membrane hi1...in−1 did not exist after (n−1) steps, then neither after
n steps exists membrane hi1i2...in which could only evolve from hi1i2...in−1

during step n. */
(4) Initialize the variable S ′ which will contain a final state of the membrane

after n-th computational step: set S ′.M to ∅ and S ′.p to S.p.
(5) Initialize auxiliary variables X,X ′: set X.M and X ′.M to ∅ and set X.p

and X ′.p to 0.
(6) /* Now we calculate how the membranes embedded in hi1...in−1 influence

its content at n-th step. */
For each membrane g contained directly in hi1...in−1 calculate recursively
State(g, n− 1) and store the result in X. Then:

(a) Try to apply rules of type (a) with parameters g, X, X ′, X ′ (see bellow).
(b) Try to apply rules of type (b) with parameters g, X, X ′, S. If any rule

was applied, skip steps (c) and (d).
(c) Try to apply rules of type (c) with parameters g, X, X ′, S ′. If any rule

was applied, skip step (d).
(d) Try to apply rules of type (d) with parameters g, X, X ′, S ′.

(7) /* We calculate state of the parent membrane of h. */
If h is not the skin membrane, then:
– set g = Parent(hi1...in−1 , n− 1);
– calculate recursively State(g, n− 1) and store the result to X.

(8) /* Now we simulate evolution of membrane hi1...in−1 at step n. */
(a) Try to apply rules of type (a) with parameters h, S, S ′, X.
(b) Try to apply rules of type (b) with parameters h, S, S ′, X. If any rule

was applied, go to step 9.
(c) Try to apply rules of type (c) with parameters h, S, S ′, X. If any rule

was applied, go to step 9.
(d) Try to apply rules of type (d) with parameters h, S, S ′, X. If any rule

was applied, go to step 9.
(e) If hi1...in−1 is an elementary membrane, try to apply rules of type (e) as

follows:
– if in = 1, then parameters are h, S, S ′, X;
– if in = 2, then parameters are h, S, X, S ′.

(9) If in = 2 and a rule of type (e) was not applied, set S ′ to nil.
/* If in = 2, then membrane hi1i2...in could only be created by an applica-
tion of an (e)-type rule during n-th step. */

(10) If S ′ 6= nil and S ′ 6= dissolved then add the remaining content of S.M to
S ′.M.

8

(11) Return S ′ and exit.

The application of rules of the types (a)–(e) is implemented as follows:

Parameters:
h – label of the membrane processed
S – original state of the membrane
S ′– final state of the membrane
T – state of another membrane eventually acting at the operation

(a) For each rule [ha → v]αh in R such that S.p = α, remove all the occurrences
of a from S.M and add to S ′.M the corresponding number of occurrences
of v (i.e. of multisets corresponding to v).

(b) For each rule a[
h

]α1

h
→ [

h
b]α2

h
in R such that S.p = α1: if T.M contains

a, then remove a from T.M, add b to S ′.M, set S ′.p to α2 and skip all
other applicable rules.

(c) For each rule [ha]α1

h → [h]α2

h b in R such that S.p = α1: if S.M contains
a, then remove a from S.M, add b to T.M, set S ′.p to α2 and skip all
other applicable rules.

(d) For each rule [
h
a]α

h
→ b in R such that S.p = α: if S.M contains a, then

remove a from S.M, add b to S ′.M, add S.M ∪ S ′.M to T.M, set S ′ to
dissolved and skip all other applicable rules.

(e) For each rule [ha]α1

h → [hb]α2

h [hc]α3

h in R such that S.p = α1: if S.M
contains a, then
– remove a from S.M
– add b to S ′.M and set S ′.p to α2,
– add c to T.M and set T.p to α3,
– skip all other applicable rules.

Observe that, with the aid of the function State, we can uniquely determine
the parent and the children (in terms of the membrane structure tree) of a
given membrane hi1i2...in , without actually storing the membrane structure of
Π after n-th step. The function Parent can be implemented as follows:

Parameters:
hi1i2...in – a membrane whose parent is searched for
n – a number of step

(a) Let g be the parent membrane of h in the initial membrane structure µ.
Calculate State(g1...1, n).

(b) If the state of g1...1 was dissolved then calculate recursively Parent(g1...1, n)
and return the result, else return g1...1.

Similarly, at step 6 we needed to find all children membranes of hi1...in−1 . If
g is a child of h in the initial configuration, then each membrane gj1j2...jn ,

9

dd d d

d d d

d d

d d d

d

d d

d

d e

e

e

e

e e

¡
¡¡ @

@@

¡
¡¡

¡
¡¡

@
@@

aa a a

b b1 b11

c c1,1

d d1,1,1
d11,11,11

c11,11

d1,1,2
d11,12,21

c11,12

b111 b112

c111,111 c112,121

d111,111,111 d112,121,211 d112,121,212

=⇒ =⇒ =⇒

%
%%

J
JJ

¿
¿¿

J
JJ

Fig. 3. Example of an indexed membrane structure after three computational steps

with ji ∈ {1, 2}, 1 ≤ i ≤ n, is a potential child of hi1i2...in . If the state of a
child membrane gj1j2...jn is dissolved, then we have to search recursively the
sub-membranes of gj1j2...jn until we identify all the non-dissolved children of
hi1i2...in . Formalization is left to the reader.

Finally, observe that the recursive function State was defined correctly because
all its recursive calls during the computation of State(hi1i2...in , n) were of the
form State(gi1i2...in−1 , n − 1), including the recursive calls during search for
parent and children membranes.

4.2 Adding the non-elementary membrane division

When the division of non-elementary membranes is allowed, we first need to
introduce an improved indexing of membranes. Unlike the previous simpli-
fied case, now in one computational step a division may simultaneously take
place at various levels of the membrane structure tree. Therefore, indices are
assigned due to the following rules:

(1) The skin membrane has always an empty index.
(2) The index of a membrane at level k + 1, k ≥ 0, consists of k tuples of

numbers 1 or 2. In the initial configuration each tuple is empty. After
n-th computational step each tuple has exactly n elements (becomes an
n-tuple).

(3) After each computational step, indices are expanded in the top-down
manner. Consider a membrane h at a level k + 1, k ≥ 0, with an index
i11 . . . i1(n−1), . . . , ik1 . . . ik(n−1). If h during step n does not divide, then
digit 1 is added to the last (n − 1)-tuple. If it divides, the resulting two
membranes have added 1 and 2, respectively, to their last (n− 1)-tuples.

(4) Simultaneously the same digit is added to the k-th tuple of indices of all
sub-membranes of h (or of the two copies of h if h divides at step n).

The whole situation is illustrated at Figure 3. At the first step, membrane
d was divided. At the second step the non-elementary membrane c1,1 was
divided, each its copy absorbing one of membranes d1,1,1 and d1,1,2. Finally,

10

at the third step membrane b11 was divided, simultaneously with membrane
d11,12,21. Observe the following facts:

• An index of a membrane contains indices of all its parent membranes, up
to the skin membrane. Simultaneously it contains history of division of the
membrane and of all its parent membranes.

• Consider a membrane with index i11 . . . i1n, . . . , ik1 . . . ikn. Then its parent
membrane has the index i11 . . . i1n, . . . , i(k−1)1 . . . i(k−1)n, unless it is dis-
solved.

• A membrane hi11...i1n,...,ik1...ikn
has evolved during n-th step from membrane

hi11...i1(n−1),...,ik1...ik(n−1)
.

• Given an initial membrane structure µ and a number n ≥ 0, we can ef-
fectively enumerate all the membranes which could potentially exist in µ
after n steps. Given a membrane hi11...i1n,...,ik1...ikn

, we can identify its parent
membrane and all its potential children membranes (some of them need not
exist).

The function Parent will in this case look as follows:

Parameters:
hi11...i1n,...,ik1...ikn

– a membrane whose parent is searched for
n – a number of step

(a) Let g be the parent membrane of h in the initial membrane structure µ.
Calculate State(gi11...i1n,...,ik1...ikn

, n).
(b) If the state was not dissolved then return gi11...i1n,...,ik1...ikn

, else calculate
recursively Parent(gi11...i1n,...,i(k−1)1...i(k−1)n

, n) and return the result.

Let us now generalize the function State to include non-elementary membrane
division. The obvious extension will be that during step 8 also rules of type
(f) will be applied. But there is also another more subtle problem.

Unlike the simplified case, the existence of a membrane hi11...i1n,...,ik1...ikn
does

not depends solely on the existence of membrane hi11...i1(n−1),...,ik1...ik(n−1)
and

on eventual application of (e) or (f)-type rules in this membrane. If any of the
upper level membranes containing (recursively) hi11...i1(n−1),...,ik1...ik(n−1)

divides
using a rule of type (f), then each its sub-membrane is moved into only one
of the two resulting membranes. Therefore, the existence of hi11...i1n,...,ik1...ikn

depends also on all indices i1n, . . . , ikn and on behavior of all the upper-level
membranes. We test this dependence recursively.

More formally, in the description of the function State the following steps will
be changed:

2. /* We check the existence of membrane hi11...i1n,...,ik1...ikn
w.r.t. the possible

application of type (f) rules in upper level membranes. */

11

(i) Initialize a new logical variable L to false.
(ii) If k = 0 (i.e. h is the skin membrane), go to step (vi).
(iii) Set g = Parent(hi11...i1n,...,ik1...ikn

, n).
Calculate recursively State(g, n).

(iv) If the result is nil then return nil and exit.
/* If the parent membrane g does not exist, then neither exists its child
hi11...i1n,...,ik1...ikn

. */
(v) If a rule of type (f) was applied during the calculation of State(g, n) in

membrane g, set L to true. Remember also the polarization values α3

and α4 of the rule.
(vi) Calculate recursively State(hi11...i1(n−1),...,ik1...ik(n−1)

, n− 1) and store it in
the variable S.

(vii) If L = true then:
if S.p = + and i(k−1)n = 2 or if S.p = − and i(k−1)n = 1, then return
nil and exit.
/* The parent membrane g was divided via a type (f) rule so that its
child hi11...i1n,...,ik1...ikn

was moved to its copy different from that specified
by i(k−1)n. */

4. Initialize the variable S ′ which will contain the final state of the membrane
after n-th computational step: set S ′.M to ∅ and S ′.p to S.p.

If L = true then:
– if S.p = + then set S ′.p to α3,
– if S.p = − then set S ′.p to α4.
/* The parent membrane g was divided via a type (f) rule which deter-
mines the polarization of its child hi11...i1n,...,ik1...ikn

. */
8. /* Now we simulate evolution of membrane hi11...i1(n−1),...,ik1...ik(n−1)

during
n-th step. */

(a) Try to apply rules of type (a) with parameters h, S, S ′, X.
If L = true and S.p ∈ {−, +} then go to step 9.

/* The parent membrane is subject to the rule of type (f) at n-th step
and hence its child hi11...i1n,...,ik1...ikn

cannot be subject to (b)–(f) type
rules in this step. */

...
(e) If hi11...i1(n−1),...,ik1...ik(n−1)

is an elementary membrane, try to apply rules
of type (e) as follows:
– if ikn = 1, then parameters are h, S, S ′, X;
– if ikn = 2, then parameters are h, S, X, S ′.

(f) If hi11...i1(n−1),...,ik1...ik(n−1)
is a non-elementary membrane, try to apply

rules of type (f) as follows:
– if ikn = 1, then parameters are h, S, S ′, X;
– if ikn = 2, then parameters are h, S, X, S ′.

9. If ikn = 2 and neither a rule of type (e) nor (f) was applied, set S ′ to nil.
/* If ink = 2, then membrane hi11...i1n,...,ik1...ikn

could only be created by an
application of an (e) or (f) type rule during n-the step. If such a rule was

12

not applied, then hi11...i1n,...,ik1...ikn
does not exist. */

Application of rules of type (f) is implemented as follows:

(f) For each rule [h0
[h1

]+h1
. . . [hk

]+hk
[hk+1

]−hk+1
. . . [hn

]−hn
]α2

h0

→ [
h0

[
h1

]α3

h1
. . . [

hk
]α3

hk
]α5

h0
[
h0

[
hk+1

]α4

hk+1
. . . [

hn
]α4

hn
]α6

h0
,

such that S.p = α2: if, before application of steps 6(a)–(d), there ex-
isted embedded membranes with polarizations + and - (this information
can be stored during step 6), then set S ′.p to α5 and T.p to α6. Skip all
other applicable rules.

Again, the recursive function State is defined correctly because each recursive
call during the computation of State(hi11...i1n,...,ik1...ikn

, n) is in one of the forms

State(hi11...i1n,...,i(k−1)1...i(k−1)n
, n), (3)

State(hi11...i1(n−1),...,ik′1...ik′(n−1)
, n− 1), 0 ≤ k′ ≤ d(µ), (4)

where d(µ) is the depth of the initial membrane structure µ. These two types
of calls include also the recursive calls during search for parent and children
membranes. One can describe the resulting graph of recursive calls as a two-
dimensional lattice with nodes corresponding to pairs (n, k), for n ≥ 0 and 0 ≤
k ≤ d(µ), where d(µ) is depth of the initial membrane structure. An oriented
edge from (n, k) to (n′, k′) denotes a call of State(hi11...i1n′ ,...,ik′1...ik′n′ , n

′) from
State(hi11...i1n,...,ik1...ikn

, n).

By 3 and 4, there are edges from each node (n, k) to (n, k − 1), if k > 0, and
to (n− 1, k′), if n > 0, for 0 ≤ k′ ≤ d(µ). Clearly, the graph is acyclic, hence
all the recursive calls will be answered after a finite number of steps.

5 Main results

In the previous section we have presented a recursive function State which
returns a state of any membrane of a P system Π after a given number of
computational steps. To employ this function to simulate the computation
of a confluent P system with active membranes, we can represent the outer
environment surrounding the P system as another region with no applica-
ble rules. Formally, we embed the whole membrane structure µ into a new
membrane, say, h0. Now it remains to subsequently calculate State(h0, n), for
n = 1, 2, 3, . . . , until the object yes appears within the content of the new re-
gion h0 or until the computation halts (this we can test by calling State(h, n)

13

for all the membranes h which could potentially exist after n steps, and re-
membering whether any rule was applied in any of them).

Observe that even if the simulated P system is non-deterministic, the simula-
tion is done in a deterministic way since the applicable rules of all types are
browsed always in the same order. Hence, in the case of a non-deterministic
but confluent P system, one of all possible computational paths is chosen and
the simulation always returns the correct result of computation. Investigating
the computational complexity of the function State, we obtain the following
result:

Theorem 2 FAMS
div-ne-TIME(TO(1)(n)) ⊆ SPACE(TO(1)(n))

PROOF. Recall first that each P system – member of a semi-uniform family
in FAMS

div-ne, starting with an input of size TO(1)(n), can be also constructed
in time TO(1)(n). Therefore, to prove the inclusion for the whole family, it is
enough to prove it for its members of size TO(1)(n).

We start with determining the space required for computation of State(h, n)
which is needed for simulation of n steps of a P system Π = (V, H, µ, w1, . . . , wm,
R) of size nO(1). Let us calculate first the space need to store the content of
an arbitrary membrane after n steps of computation. Let

d(µ) be the depth of the initial membrane structure tree µ,
p = max{|v|; (a → v) ∈ R},
q = card(V),
on denote the number of objects within the system after n steps. Hence,
o0 = |w1|+ . . . |wm|.

By assumption, the values d(µ), p, q and o0 are bounded from above by nO(1).
In the rest of the proof we treat them as constants as they are fixed for a given
Π. If we considered only the rules of type (a), we obtained on ≤ o0p

n. But the
membranes can divide, too, and their number after n steps is in bounded by
the expression m(2d(µ))n (if each membrane at each step divides using a rule
of type (e) or (f), which is actually not possible due to conflicts among rules).
Hence the total number of the objects is

on ≤ o0m(p 2d(µ))n.

As at some step potentially all (but the skin) membranes can dissolve, releasing
its content into a single membrane, on must be considered also as an upper
bound for the number of objects in a single membrane. Then the number of
bits necessary to store a content of an arbitrary membrane is

sn ≤ qdlog one ≤ qdlog(o0m)e+ nq(dlog pe+ d(µ)) = c0 + c1n (5)

14

for positive constants c0 and c1 of size nO(1).

At each step, the function State(hi11...i1n,...,ik1...ikn
, n) can realize one of the

recursive calls of type (3) or (4). During these calls, there must be preserved
the following information:

(1) a specification of membrane hi11...i1n,...,ik1...ikn
which requires kn + dlog me

bits, where m is the initial degree of the system Π,
(2) some other variables as L of a constant size c independent on n and k,
(3) only during the calls of type (4): variables S, S ′, X, X ′ which store a

content of membrane hi11...i1n,...,ik1...ikn
and each of which requires at most

sn bits.

Denote by S(n, k) the space needed to calculate State(hi11...i1n,...,ik1...ikn
, n),

then by (3), (4) and the paragraphs 1–3 above we get the recurrence

S(0, k) = s0, 0 ≤ k ≤ d(µ), (6)

S(n, 0) = S(n− 1, 1) + 4sn + c, n ≥ 1, (7)

S(n, k) = max{S(n, k − 1), max{S(n− 1, k′) | 0 ≤ k′ ≤ d(µ)}+ 4sn}
+ nk + c, n ≥ 1, 1 ≤ k ≤ d(µ). (8)

By expanding (8) to a series for k, k − 1, . . . , 1 we obtain

S(n, k) = max{S(n, 0), max{S(n− 1, k′) | 0 ≤ k′ ≤ d(µ)}+ 4sn}

+ n
k∑

i=1

i + kc, n ≥ 1. (9)

By denoting

S(n) = max{S(n, k) | 0 ≤ k ≤ d(µ)} (10)

and by substituting from (7) we can rewrite the recurrence to the form

S(0) = s0,

S(n)≤S(n− 1) + 4sn + d(µ)(d(µ) + 1)n/2 + (d(µ) + 1)c, n ≥ 1.

After substituting from (5), a solution to this recurrence is

S(n) ≤ s0 + c2n
2 + c3n

for positive constants c2 and c3 of size nO(1), and hence S(n) = nO(1).

Finally, after substituting n with TO(1)(n), we get that the simulation of a

15

TO(1)(n)-time bounded P system Π is TO(1)(n)-space bounded which concludes
the proof.

Now, consider the relation (2) and the facts that the second machine class is
closed under polynomial time reduction, and that deterministic P systems with
active membranes are universal computers [1]. Therefore we can generalize (2)
as follows:

SPACE(TO(1)(n)) ⊆ FAMdiv-ne-TIME(TO(1)(n)) ⊆ FAMS
div-ne-TIME(TO(1)(n))

Together with Theorem 2 we can conclude that the parallel computation thesis
holds for uniform families of confluent P systems with active membranes:

Corollary 3

FAMdiv-ne-TIME(TO(1)(n)) = FAMS
div-ne-TIME(TO(1)(n)) = SPACE(TO(1)(n))

Furthermore, as its special case for a polynomial time T (n) we obtain:

Corollary 4
PMCdiv-ne = PMCS

div-ne = PSPACE.

6 Discussion

The results presented in this paper establish an upper bound on the power
of confluent P systems with active membranes. However, we do not know
the upper bound of the power of their non-deterministic and non-confluent
variant. The presented proof cannot be simply extended to this case by using
a non-deterministic RAM machine. The reason is that during the simulation
of a computation of Π, we did not store its configurations but re-calculated
them again and again when needed. Therefore, if these calculations were done
non-deterministically, we could get different results in different calculations
of the same configuration. Consequently, the whole simulation would not be
consistent.

Another variant of P systems with active membranes is presented in [5]. In this
variant the non-elementary membrane division is not performed by rules of
type (f) above. Instead, rules of the form [

h
a]α1

h
→ [

h
b]α2

h
[
h
c]α3

h
are used for

both elementary and non-elementary membrane division. If in the membrane
h there are other objects than a and any embedded membranes, then during
the same step they may evolve in a usual way and then the results of this
evolution are copied into both copies of membrane h.

16

Eventual simulation of this variant of P systems with active membranes would
follow almost exactly the way described in Section 4.1. The only differences
would be that also non-elementary membranes can divide and that the struc-
tural indexing of the type i11 . . . i1n, . . . , ik1 . . . ikn would be used. Therefore,
we claim that Theorem 2 holds also in this case, and the class of problems
solvable in a polynomial time by this variant of P systems is bounded from
above by PSPACE. However, there is no formal proof yet that these P sys-
tems can also solve PSPACE-complete problems in polynomial time. Hence,
the validity of parallel computation thesis (3) in this case remains open. An-
other open problem is the (non-)validity of the results contained in this paper
in the case of P systems with active membranes and minimal parallelism [5].

Acknowledgements

Research was partially supported by the Czech Science Foundation, grant No.
201/06/0567, and by the Programa Ramón y Cajal, Ministerio de Ciencia y
Tecnoloǵıa, Spain.

References

[1] A. Alhazov, R. Freund, A. Riscos-Núñez, One and two polarizations, membrane
creation and objects complexity in P systems, in: G. Ciobanu, Gh. Păun
(Eds.), Technical Report 05-11, Institute e-Austria, Timişoara, Romania, First
International Workshop on Theory and Application of P Systems (TAPS), 2005,
pp. 9–18.

[2] A. Alhazov, C. Martin-Vide, L. Pan, Solving a PSPACE-complete problem by
P systems with restricted active membranes, Fundamenta Informaticae, 58, 2
(2003), 67–77.

[3] J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity I, Second Edition,
Springer-Verlag, Berlin, 1995.

[4] J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity II, Springer-Verlag,
Berlin, 1991.

[5] G. Ciobanu, L. Pan, G. Păun, M.J. Pérez-Jiménez, P Systems with Minimal
Parallelism, submitted.

[6] L.M. Goldschlager, A universal interconnection pattern for parallel computers,
J. Assoc. Comput. Mach., 29 (1982), 1073–1086.

[7] Gh. Păun, Computing with Membranes, J. Comput. System Sci., 61 (2000),
108–143.

17

[8] Gh. Păun, Membrane Computing: an Introduction, Springer-Verlag, Berlin,
2002.

[9] Gh. Păun, P systems with active membranes: attacking NP complete problems,
J. Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

[10] M.J. Pérez-Jiménez, A.R. Jiménez, F. Sancho-Caparrini, Complexity classes in
models of cellular computing with membranes, Natural Computing, 2 (2003),
265–285 .

[11] P. Pudlák, Complexity theory and genetics: The computational power of
crossing-over. Information and Computation, 171 (2001), 201–223.

[12] P. Sośık, The computational power of cell division: beating down parallel
computers? Natural Computing, 2–3 (2003), 287–298.

[13] P. van Emde-Boas, The second machine class: models of parallelism, in: J. van
Leeuwen, J.K. Lenstra and A.H.G. Rinnooy Kan (Eds.), Parallel Computers
and Computations, CWI Syll., Centre for Mathematics and Computer Science,
Amstedam, 1985.

[14] J. van Leeuwen, J. Wiedermann, Array processing machines, in: L. Budach
(Ed.), Fundamentals of Computational Theory 1985, Cottbus GDR, Springer-
Verlag, LNCS 199 (1985), pp. 257–268.

18

