
P Colonies Working in the
Maximally Parallel and
in the Sequential Mode

Rudolf FREUND and Marion OSWALD
Faculty of Informatics

Vienna University of Technology
Favoritenstr. 9-11, A-1040 Wien, AUSTRIA

E-mail: {rudi,marion}@emcc.at

Abstract

We consider P colonies as introduced in [4] and investigate their
computational power when working in the maximally parallel and in
the sequential mode. It turns out that there is a trade-o¤between max-
imal parallelism and checking programs: Using checking programs (i.e.,
priorities on the communicaton rules in the programs of the agents), P
colonies working in the sequential mode with height at most 5 are com-
putationally complete, whereas when working in the maximally parallel
mode, P colonies (again with height 5) already obtain the same com-
putational power without using checking programs. Moreover, when
allowing an arbitrary number of programs for each agent, we can prove
that P colonies with only one agent (thus these P colonies are working
in the sequential mode) are already computationally complete. Finally,
P colonies with an arbitrary number of agents working in the sequential
mode as well as even P colonies with only one agent using an arbitrary
number of non-checking programs characterize the family of languages
generated by matrix grammars without appearance checking.

1 Introduction

In [4], a class of membrane systems (introduced in [6] and currently called
P systems; see [7] for a comprehensive overview and [9] for recent develop-
ments) similar to so-called colonies of simple formal grammars (introduced
in [3]; see also [1] for basic elements of grammar systems), was introduced
as P colonies.

1

Taking the idea of components that are as simple as possible and act in
a shared environment, independent cells are the basic computing agents in
the formal model of P colonies. Each agent is associated with a multiset of
objects and with a set of rules. In the speci�c model introduced in [4], at
each moment, only two objects are allowed to be inside any agent.

Each program assigned to an agent consists of an evolution rule of the
form a ! b, transforming an internal object a into b, as well as a com-
munication rule of the form c $ d, exchanging the internal object c with
the object d taken from the environment. Hence, for each agent, a pair of
rules ha! b; c$ di is called a program. Thus, if the agent contains the
objects a; c, after applying this program it will contain the objects b; d. In
one time unit both rules have to be applied, one for the evolution and one
for communication with the environment.

At the beginning of the computation, all objects from the environment
(that are supposed to be present in an unbounded number) as well as the
two objects initially present inside of each agent are identical with the same
generic object e.

In [4], a non-trivial capability is added to the agents: they can check
for the appearance of a given object in the environment by programs of the
form ha! b; c$ d=c0 $ d0i that are called checking programs. Here again,
one evolution rule and one communication rule are applied at the same time,
but the communication rule can be chosen from two possibilities, with the
�rst one having a higher priority, thus, P colonies using checking programs
will also be called P colonies with priorities in this paper.

Hence, a P colony consists of a �nite number of agents (identi�ed by
their sets of programs) placed in a common environment where arbitrarily
many copies of e are present.

In [4], P colonies were shown to be computationally complete when using
an unbounded number of agents not containing more than �ve programs each
when working in a maximally parallel way, i.e., in each moment, each agent
which can apply any of its programs has to non-deterministically choose
one and apply it, until no agent can apply any of its programs anymore
(with such a halting computation, a result is associated in the form of the
number of copies of a distinguished object in the environment). On the other
hand, two agents were shown to be su¢ cient for obtaining computational
completeness when using an unbounded number of programs.

After some preliminary de�nitions, we here show that P colonies even
when working in the sequential mode are computationally complete when
using an unbounded number of agents with no more that �ve programs

2

each. Without using checking programs (i.e., without priorities) we obtain
a similar result for P colonies working in the maximally parallel way. P
colonies with only one agent working with an arbitrary number of checking
programs are shown to be computationally complete, too. On the other
hand, P colonies without priorities (with one agent or with an arbitrary
number of agents working in the sequential mode) characterize the family
of languages generated by matrix grammars without appearance checking.

2 Prerequisites

In this section, we give some preliminary de�nitions, consider basic facts of
register machines and matrix grammars.

2.1 Preliminary De�nitions

The set of non-negative integers is denoted by N. An alphabet V is a �nite
non-empty set of abstract symbols. Given V , the free monoid generated by
V under the operation of concatenation is denoted by V �; the empty string is
denoted by �, and V ��f�g is denoted by V +. By jxj we denote the length
of the string x over V: The family of recursively enumerable languages is
denoted by RE:

Let fa1; :::; ang be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by jxjai ; the Parikh vector associated with x with
respect to a1; :::; an is

�
jxja1 ; :::; jxjan

�
: The Parikh image of a language L

over fa1; :::; ang is the set of all Parikh vectors of strings in L. For a family
of languages FL; the family of Parikh images of languages in FL is denoted
by PsFL: A (�nite) multiset hm1; a1i ::: hmn; ani with mi 2 N; 1 � i � n;
is represented as any string x the Parikh vector of which with respect to
a1; :::; an is (m1; :::;mn) :

In the following we will not distinguish between a vector (m1; :::;mn) ;
its representation by a multiset hm1; a1i ::: hmn; ani or its representation by
a string x with Parikh vector

�
jxja1 ; :::; jxjan

�
= (m1; :::;mn) :

For more notions as well as basic results from the theory of formal lan-
guages, the reader is referred to [2] and [8].

2.2 Register machines

A register machine is a constructM = (m;P; l0; lh) ; where m is the number
of registers, P is a �nite set of instructions injectively labelled with elements
from a given set lab (M), l0 is the initial/start label, and lh is the �nal label.

3

The instructions are of the following forms:

� l1 : (A (r) ; l2; l3)
Add 1 to the contents of register r and proceed to the instruction
(labelled with) l2 or l3. (We say that we have an ADD instruction.)

� l1 : (S (r) ; l2; l3)
If register r is not empty, then subtract 1 from its contents and go to
instruction l2, otherwise proceed to instruction l3. (We say that we
have a conditional SUB instruction.)

� lh : halt
Stop the machine. The �nal label lh is only assigned to this instruction.

Without loss of generality, one can assume that in each ADD instruction
l1 : (A (r) ; l2; l3) and in each conditional SUB instruction l1 : (S (r) ; l2; l3)
the labels l1; l2; l3 are mutually distinct.

The following result already follows from the results proved in [5]:

Proposition 1. Let L � N� be a recursively enumerable set of (vectors of)
non-negative integers. Then L can be generated by a register machine with
at most � + 2 registers; moreover, at the beginning of a computation, all
registers are empty; the results of a halting computation appear in the �rst
� registers.

Moreover, we call a register machine partially blind, if we interpret a
subtract instruction in the following way:

l1 : (S (r) ; l2; l3)

If register r is not empty, then subtract one from its contents
and go to instruction l2 or to instruction l3: (We say that we
have an unconditional SUB instruction; if register r is empty
when attempting to decrement register r, then the program ends
without yielding a result).

When the register machine reaches the �nal state, the results obtained in
the �rst (�) register(s) are only taken into account if the remaining registers
are empty (in some sense this means that although during the computation
we cannot check a register for zero, but at the end of a computation we can
check those registers for zero that do not contain a result). The family of
sets of vectors of non-negative integers generated by partially blind register
machines is denoted by NRMpb:

4

2.3 Matrix grammars

A context-freematrix grammar (without appearance checking) is a construct
G = (N;T; S;M) where N and T are sets of non-terminal and terminal
symbols, respectively, with N \ T = ;, S 2 N is the start symbol, M is
a �nite set of matrices, M = fmi j 1 � i � ng, where the matrices mi are
sequences of the form mi = (mi;1; : : : ;mi;ni), ni � 1, 1 � i � n, and the
mi;j , 1 � j � ni, 1 � i � n, are context-free productions over (N;T). For
mi = (mi;1; : : : ;mi;ni) and v; w 2 (N [T)� we de�ne v =)mi w if and only
if there are w0; w1; : : : ; wni 2 (N [T)� such that w0 = v; wni = w, and for
each j; 1 � j � ni, wj is the result of the application of mi;j to wj�1. The
language generated by G is

L (G) = fw 2 T � j S =)mi1
w1 : : : =)mik

wk; wk = w;

wj 2 (N [T)� ; mij 2M for 1 � j � k; k � 1
	
:

The family of languages generated by matrix grammars without appear-
ance checking is denoted by MAT �. It is known that PsMAT � � PsRE.
Further details about matrix grammars can be found in [2] and in [8]. We
only mention that the power of matrix grammars is not decreased if we only
work with matrix grammars in the f-binary normal form where M contains
rules of the following forms:

1. (S ! XA); with X 2 N1; A 2 N2;

2. (X ! Y;A! x); with X;Y 2 N1; A 2 N2; x 2 (N2 [T)�; jxj � 2;

3. (X ! f;A! x), with X 2 N1; A 2 N2; and x 2 T �; jxj � 2;

4. (f ! �):

Moreover, there is only one matrix of type 1 and only one matrix of type
4, which is only used in the last step of a derivation yielding a terminal
result.

2.4 P colonies

A P colony is a construct � = (V; e; T;B1; :::; Bn), where V is an alphabet
(its elements are called objects), e is a distinguished object of V (the en-
vironmental object), T � V � feg is a set of �nal objects, and B1; :::; Bn
are agents; each agent Bi is a pair Bi = (Oi; Pi), where Oi is a multiset
over V (the initial state of the agent), and Pi is a �nite set fpi;1; :::; pi;kig of

5

programs; each program pi;j is either a non-checking program of the form
ha! b; c$ di, or a checking program of the form ha! b; c$ d=c0 $ d0i.
In what follows, we always assume that each Oi consists of two copies of e.

At the beginning of a computation performed by a given P colony, the
environment contains arbitrarily many copies of e; moreover, each agent
contains two copies of e. At each step of the computation, the contents
of the environment and of the agents change in the following manner: In
the maximally parallel derivation mode, each agent which can use any of
its programs should use one (non-deterministically chosen), whereas in the
sequential derivation mode, one agent uses one of its programs at a time
(non-deterministically chosen). By using a program ha! b; c$ di, an agent
with objects ac inside and with d in the environment will get the objects
bd inside and c will now be placed into the environment. Using a program
ha! b; c$ d=c0 $ d0i means to pass from ac inside and d outside to bd
inside and c outside, and this should be done whenever possible; if the
interchange c $ d cannot be done, then we pass from ac0 inside and d0

outside to ad0 inside and c0 outside. Note that the �rst rule is always applied,
and that either the �rst or the second communication rule has to be applied,
with priority for the �rst one.

Any copy of an object can be involved in only one rule. Using the pro-
grams in this way, with all agents acting simultaneously or sequentially,
non-deterministically choosing the program(s) to be applied, we can pass
from one con�guration of the system (represented by the contents of the
agents and of the environment) to another con�guration. Formally, a con-
�guration can be written as an (n+1)-tuple (w1; :::; wn;wEe!), with wi 2 V 2
representing the objects from agent i, 1 � i � n, and wE 2 (V � feg)�, rep-
resenting the objects from the environment di¤erent from the �background�
object e; e! is used as notation for the arbitrarily many copies of the object
e that are always contained in the environment; the initial con�guration of
a system is always (ee; :::; ee; e!). A sequence of transitions is called a com-
putation. A computation is said to be halting, if a con�guration is reached
where no program can be applied anymore. With a halting computation we
associate a result which is given as the number of copies of the objects from
T present in the environment in the halting con�guration.

Because of the non-determinism in choosing the programs, starting from
the initial con�guration we obtain several computations, hence, with a P
colony we can associate a set of (vectors of) numbers, denoted by N(�),
computed by all possible halting computations of �.

The number of agents in a given P colony is called the degree of �; the

6

maximal number of programs of an agent of � is called the height of �.
The family of all sets of (vectors of) numbers N(�) computed as above by
P colonies of degree at most n � 1 and height at most h � 1 (using check-
ing programs, i.e., priorities on the communication rules in the programs)
working in the sequential mode is denoted by NPCOLseq(n; h; pri); whereas
the corresponding families of P colonies working in the maximally parallel
way are denoted by NPCOLpar(n; h; pri). If one of the parameters n; h is
not bounded, then we replace it with �. If only P colonies using programs
without priorities are taken into account, we omit the parameter pri:

3 Results

In this section we will prove our results for P colonies. We start with showing
that P colonies of height �ve but with an unbounded number of agents are
computationally complete even when working in the sequential mode. To
this aim, we can take over the proof of Theorem 1 given in [4].

Theorem 2. NPCOLseq(�; 5; pri) = PsRE:

Proof. Let us consider a register machine M = (m;P; l0; lh). All the labels
from lab(M) will be objects for our colony; moreover, the contents of a
register i will be represented by the number of copies in the environment
of a speci�c object ai. We assume the �rst k registers to contain the �nal
results. More exactly, we construct the P colony

� = (V; e; T;B1; :::; Bn);
V = lab(M) [fai j 1 � i � mg [fl00; e; d; d0g;
T = fai j 1 � i � kg;

and the following n = card(P)+3 agents and their corresponding programs:

1. We consider the starting agents B1; B2 with their sets of programs:
P1 = fhe! d; e$ ei ; he! l0; d$ d0i ; hd0 ! l00; l0 $ eig ;
P2 = fhe! d0; e$ ei ; he! l00; d

0 $ eig :
Each of the agents can start with its �rst program. Agent B1 can only
continue with its second program in step four, when d0 is present in
the environment after agent B2 has expelled this symbol after having
executed all its programs. Finally, B1 can release l0 into the environ-
ment to start the simulation of a computation in M . Note that at
this moment, both agents have stopped their work (with B1 and B2
containing the multiset hl00; ei).

7

2. For each ADD instruction l1 : (A (r) ; l2; l3) from P we consider an
agent with the set of programs
Pl1 = fhe! ar; e$ l1i ;

hl1 ! l2; ar $ ei ; he! e; l2 $ ei ;
hl1 ! l3; ar $ ei ; he! e; l3 $ eig:

In the �rst step, we apply the program he! ar; e$ l1i thus obtaining
the multiset har; l1i from the multiset he; ei in the agent. By applying
the programs hl1 ! li; ar $ ei and he! e; li $ ei ; i 2 f2; 3g ; we end
up with the multiset he; ei in the agent again, whereas in the environ-
ment the number of symbols ar has been incremented and the label
symbol l1 has been replaced by li:

3. For each (conditional) SUB instruction l1 : (S (r) ; l2; l3) from P we
consider the agent with the set of programs
Pl1 = fhe! e; e$ l1i ; hl1 ! l2; e$ ar=e$ ei ;

har ! e; l2 $ ei ;
hl2 ! l3; e$ ei ; he! e; l3 $ eig:

After taking the label symbol l1 inside by applying the
rule he! e; e$ l1i, the application of the checking program
hl1 ! l2; e$ ar=e$ ei allows for checking whether the environment
contains a symbol ar or not. In case it is present, hl1 ! l2; e$ ari is
applied taking one symbol ar from the environment and yielding the
multiset hl2; ari inside the agent. Then the program har ! e; l2 $ ei
has to be applied, yielding he; ei in the agent again, whereas in the
environment the number of symbols ar has been decremented and the
label symbol l1 has been replaced by l2: On the other hand, if no
symbol ar is present inside, then instead we execute the programs
hl1 ! l2; e$ ei and afterwards we have to apply hl2 ! l3; e$ ei and
he! e; l3 $ ei thus yielding he; ei in the agent again, whereas in the
environment the label symbol l1 has been replaced by l3:

As the simulations of the ADD as well as the conditional SUB instruc-
tion as de�ned above are exactly the same as given in the proof of
Theorem 1 in [4], we refer to there for some further explanations; yet
we have to emphasize the fact that the P colonies constructed there
work in the maximally parallel mode, whereas here we work in the
sequential mode instead, which in fact only makes a real di¤erence for
the work of the �rst two agents B1; B2 when starting the computation.

4. When the �nal label lh appears in the environment, from all the agents
de�ned above there is no program to be applied anymore; the �nal

8

agent Bn with the following two programs erases lh and then stops
with he; ei in the agent:
Pn = fhe! e; e$ lhi ; hlh ! e; e$ eig

Thus, the P colony � halts with with the result consisting of the objects
ar present in the environment, with B1 and B2 containing the multiset hl00; ei
and all other agents containing he; ei : As the environment only contains
symbols from T; we could also regard � as a non-extended system where
the result of a halting computation is constituted by the symbols di¤erent
from e in the environment.

We �nally observe that to each agent at most �ve agents are assigned,
which observation completes the proof.

On the other hand, when we omit the checking programs, i.e., the prior-
ities on the communication rules, but use the maximally parallel derivation
mode instead of the sequential mode, we get a similar result by using the
idea of �paired�programs: P colonies of height 5 working in the maximally
parallel mode but without checking programs are computationally complete.

Theorem 3. NPCOLpar(�; 5) = PsRE:
Proof (sketch). Again we consider a register machine M = (m;P; l0; lh),
and represent the contents of a register i by the number of copies in the
environment of a speci�c object ai. Then we construct the P colony

� = (V; e; T;B1; :::; Bn)

V =
n
l; l̂; l̂0; ~l; ~l0; ~l00; �l; �l0 j l 2 lab(M)

o
[fai j 1 � i � mg [fl00; e; d; d0g ;

T = fai j 1 � i � kg ;

and the following agents and their corresponding programs (to make the
interplay of the agents more visible, we here use a vertical notation of the
respective programs):

Each simulation of instruction l starts with l and l̂ in the environment;
to initialize the whole system, i.e. to produce l0 and l̂0; we take the following
two agents P0;1 and P0;2:

P0;1 = f
D
e! ~l0; e$ e

E
; P0;2 = fD

e! ~l00;
~l0 $ e

E
;D

~l00 ! l0; e$ e
E
;

D
e! l̂0; e$ ~l0

E
;D

e! ~l000 ; l0 $ e
E
g

D
~l0 ! ~l000 ; l̂0 $ e

E
g

9

Both agents end up with the multiset
D
e; ~l000

E
inside and stop forever; at

the same time, i.e., after four steps, they have released l0 and l̂0 into the
environment.

An ADD instruction l1 : (ADD (r) ; l2; l3) can be simulated by the fol-
lowing four agents Pl1;i; i 2 f1; 2; 3; 4g:

Pl1;1 = f

e! �l01; e$ l1

�
; Pl1;2 = f

D
e! e; e$ l̂1

E
;

l1 ! ar; �l
0
1 $ e

�
;

D
l̂1 ! e; e$ e

E
;

he! l2; ar $ ei ;
D
e! l̂2; e$ �l01

E
;

he! e; l2 $ ei g
D
�l01 ! e; l̂2 $ e

E
g

Pl1;3 = f
D
e! ~l01; e$ l1

E
; Pl1;4 = f

D
e! e; e$ l̂1

E
;D

l1 ! ar; ~l
0
1 $ e

E
;

D
l̂1 ! e; e$ e

E
;

he! l3; ar $ ei ;
D
e! l̂3; e$ ~l01

E
;

he! e; l3 $ ei g
D
~l01 ! e; l̂3 $ e

E
g

Agents Bl1;1 and Bl1;2 (Bl1;3 and Bl1;4; respectively) work together in
the following way. Bl1;1 (Bl1;3) takes l1 from the environment, produces
ar and sends out �l01 (~l

0
1) while in the same two steps either Bl1;2 or Bl1;4

simply �consumes� l̂1 ending up with the multiset he; ei again (due to the
maximal parallelism, Bl1;2 or Bl1;4 have to work in parallel with Bl1;1 or
Bl1;3; respectively). In the subsequent steps, Bl1;1 (Bl1;3) sends out ar and
l2 (l3), whereas now Bl1;3 (Bl1;4) produces and sends out l̂2 (l̂3), allowing for
the next instruction l2 or l3, respectively, to be simulated.

A conditional SUB operation l1 : (SUB (r) ; l2; l3) can be simulated by
the following six agents Pl1;i; i 2 f1; 2; 3; 4; 5; 6g:

Pl1;1 = f he! e; e$ l1i ; Pl1;2 = f
D
e! l̂01; e$ l̂1

E
;

l1 ! �l1; e$ ar
�
;

D
l̂1 ! e; l̂01 $ e

E
g

ar ! e; �l1 $ e
�
;D

l1 ! ~l1; e$ l̂01

E
;D

l̂01 ! e; ~l1 $ e
E

g

In the �rst step, Bl1;1 and Bl1;2 take in the labels l1 and l̂1: In the second
step, Bl1;2 sends out l̂

0
1; whereas Bl1;1;

10

1. in case there is an object ar in the environment, takes in ar and then
sends out �l1;

2. in case there is no object ar present outside, consumes (after having
waited one step) l̂01 and �nally sends out ~l1:

With �l1 in the environment, Bl1;3 and, two steps later, Bl1;4 become
active; they produce the corresponding labels l2 and l̂2:

Pl1;3 = f

e! �l01; e$ �l1

�
; Pl1;4 = f

�l1 ! �l001 ;
�l01 $ e

�
;D

�l001 ! l2; e$ l̂01

E
;

D
e! l̂2; e$ �l01

E
;D

l̂01 ! e; l2 $ e
E

g
D
l̂01 ! e; l̂2 $ e

E
g

If, on the other hand, ~l1 was expelled by Bl1;1; then only Bl1;5 and Bl1;6
can apply their programs in a similar way as Bl1;3 and Bl1;4; �nally sending
out l3 and l̂3 :

Pl1;5 = f
D
e! ~l01; e$ ~l1

E
; Pl1;6 = fD

~l1 ! ~l001 ;
~l01 $ e

E
;D

~l001 ! l3; e$ e
E
;

D
e! l̂3; e$ ~l01

E
he! e; l3 $ ei g

D
~l01 ! e; l̂3 $ e

E
g

When the �nal label lh appears in the environment, from all the agents
de�ned above there is no program to be applied anymore; the �nal agent
Bh with the following two programs erases lh and then stops with he; ei in
the agent:

Ph = fhe! e; e$ lhi ; hlh ! e; e$ eig

Thus, the P colony � halts with the result consisting of the objects ar
present in the environment, with B1 and B2 containing the multiset

D
e; ~l000

E
and all other agents containing he; ei :

Finally, we again observe that each agent has at most �ve programs not
containing a checking program, which observation concludes the proof.

If instead of bounding the height the number of agents is bounded, two
agents were shown to be su¢ cient to obtain computational completeness in

11

[4]. We here can show that one agent with checking programs is already
enough in this case (observe that one agent obviously by de�nition works in
the sequential mode).

Theorem 4. NPCOLseq(1; �; pri) = PsRE:

Proof (sketch). We take the idea given in the proof of Theorem 2 in [4],
yet now there is only one agent instead of two. Once more we consider a
register machine M = (m;P; l0; lh), and represent the contents of a register
i by the number of copies in the environment of a speci�c object ai. We
now construct the P colony

� = (V; e; T;B1)
V = fl; l0; l00 j l 2 lab(M)g [fai j 1 � i � mg [f�; �0g;
T = fai j 1 � i � kg ;

and the following (possibly checking) programs in P1 for the single agent
B1:

To start the simulation, the agent B1 has to perform the following pro-
grams:

he! �; e$ ei ; he! �0; � $ ei ; h�0 ! �; e$ �i ; h� ! �; �$ ei ;
h� ! l0; �$ ei :

By the �rst four programs, objects � 2 fl0; l00 j l 2 lab (M)g are pro-
duced and sent to the environment. If at some moment, the program
h� ! l0; �$ ei is used, then the �dummy�object � disappears forever and
the simulation of the computation in M can start with the agent containing
the multiset hl0; ei :

To simulate an ADD instruction l1 : (A (r) ; l2; l3) from P we have to
include the following programs to P1 :

hl1 ! l01; e$ ei ; he! ar; l
0
1 $ l01i ; hl01 ! l2; ar $ ei ; hl01 ! l3; ar $ ei

With these programs an object ar is produced and sent to the environ-
ment while at the same time the corresponding label to proceed is generated
so that after performing these programs, the agent contains either the mul-
tiset hl2; ei or the multiset hl3; ei and then can go on simulating the next
instruction.

To simulate a conditional SUB instruction l1 : (S (r) ; l2; l3) from P we
add the following programs to P1 :

12

hl1 ! l01; e$ ar=e$ ei ; har ! e; l01 $ l001i ;
hl001 ! l2; e$ ei ; hl01 ! l3; e$ ei

In the case that at least one copy of ar is present in the environment,
it is brought into the agent and changed into e before producing label l2
to proceed. Otherwise, after having checked that there is no copy of ar
present in the environment, label l3 is produced. Hence, after simulating
the conditional SUB instruction from P , the contents of the agent is either
hl2; ei or hl3; ei allowing for the next instruction l2 or l3 to be simulated.

To make sure that su¢ ciently many primed versions of the corresponding
labels have been produced before starting the simulation, we also have to
add the program hl01 ! l01; e$ ei : This program ensures the computation
to go on forever in case the communication rules l01 $ l01 or l

0
1 $ l001 cannot

be used.
When the �nal label lh appears in the environment, none of the pro-

grams de�ned above can be applied anymore; for eliminating all objects
� 2 fl0; l00 j l 2 lab (M)g in the environment, we use the following programs:

hlh ! lh; e$ �i ; h�! l0h; lh $ ei ; hl0h ! e; e$ lhi

Thus, the P colony � �nally halts with the result consisting of the objects
ar present in the environment and with B1 containing the multiset he; lhi :

Without using checking programs, i.e., without priorities on the commu-
nication rules, P colonies working in the sequential mode only characterize
the family of Parikh sets of languages generated by matrix grammars or
equivalently, the family of sets of vectors of non-negative integers generated
by partially blind register machines:

Theorem 5. NRMpb = NPCOLseq(1; �) = NPCOLseq(�; �) = PsMAT:

Proof. We will prove the following sequence of inclusions:

NRMpb � NPCOLseq(1; �) � NPCOLseq(�; �) � PsMAT �
NRMpb

The �rst inclusion

NRMpb � NPCOLseq(1; �)

13

is an immediate consequence of the preceding theorem - to simulate an un-
conditional SUB instruction l1 : (S (r) ; l2; l3) from P of a register machine
M = (m;P; l0; lh) we now use the following programs for B1 (we have re-
placed the checking program hl1 ! l01; e$ ar=e$ ei by the non-checking
program hl1 ! l01; e$ ari):

hl1 ! l01; e$ ari ; har ! e; l01 $ l001i ;
hl001 ! l2; e$ ei ; hl001 ! l3; e$ ei ;

The only problem we have to face now is that the �rst program may not be
applicable due to the absence of the symbol ar in the environment. For that
purpose, we add the program

hl1 ! l01; e$ ei

After having executed this program, we end up in an in�nite loop with
the program hl01 ! l01; e$ ei : Hence, a result will only be computed if we
never have tried to subtract from zero, which is just the same idea as used
in partially blind register machines. On the other hand, at the end of a
simulation of a computation in M the condition of halting for the P colony
� allows us to check whether all the other registers are empty, i.e., to the
programs

hlh ! lh; e$ �i ; h�! l0h; lh $ ei ; hl0h ! e; e$ lhi

constructed in the proof of the preceding theorem for eliminating all objects
� 2 fl0; l00 j l 2 lab (M)g in the environment, we now also add the corre-
sponding programs for � 2 fai j k + 1 � i � mg; too, i.e.,

hlh ! lh; e$ �i ; h�! l0h; lh $ ei :

The remaining elements of the P colony are just the same as those of the
P colony constructed in the proof of the preceding theorem; we leave the
remaining details to the reader.

The inclusion

NPCOLseq(1; �) � NPCOLseq(�; �)

is an immediate consequence of the de�nitions.

The main contribution in this proof now is to show the inclusion

14

NPCOLseq(�; �) � PsMAT:

Let � = (V; e; T;B1; :::; Bn) be a P colony without checking programs.
We now (sketch how to) construct the matrix grammar G = (N;T; S;M)
simulating � as follows:

The symbols a 6= e in the agents and in the environment are represented
by non-terminal symbols: For a symbol a 2 V in the agent i; 1 � i � n; we
use the non-terminal (a; i) ; for a symbol a 2 V �feg (observe that e occurs
in an unbounded number in the environment) in the environment, we use
the non-terminal (a; 0) :

In G; we start with the initial matrix�
S ! E (e; 1)2 ::: (e; n)2

�
:

For simulating the program in Pi for the agent Bi

ha! b; c$ di

we then use the matrix

(E ! E; (a; i)! (b; i) ; (c; i)! h (c) ; (d; 0)! (d; i))

for d 6= e and the matrix

(E ! E; (a; i)! (b; i) ; (c; i)! h (c) ; E ! (e; i))

in the case d = e; where
h : (V � f1; :::; ng)� ! (V � f0g)�

is the morphism with

h ((c; i)) = (c; 0) for c 6= e and
h ((e; i)) = �.

In that way, the execution of a program in the P colony � can easily be simu-
lated by the application of the corresponding matrix in the matrix grammar
G:

The main di¢ culty arises when we non-deterministically have to guess
when � has reached a halting con�guration where no program can be ap-
plied any more, hence, G now has to �lter out the terminal symbols in the
environment and to erase all the remaining non-terminal symbols. Therefore
we have to consider all di¤erent possibilities for con�gurations to be halting

15

ones; fortunately, these con�gurations can be described by a �nite set of
strings (lists of variables) of the form

a1;1a1;2:::an;1an;2a0;1:::a0;l
for some l < card (V) ; the a0;j ; 1 � j � l; being di¤erent symbols from
V � feg representing all those symbols occurring in the form (a0;j ; i) at
least once in the environment, whereas ai;1; ai;2; 1 � i � n; represent the
multiset in the corresponding agent i appearing as (ai;1; i) and (ai;2; i) in
the sentential form produced by the matrix grammar. According to our
assumptions, each of these strings describes a situation where no program
from the P colony � can be applied any more, i.e., a halting con�guration.
Non-deterministically we now guess such a situation and de�ne matrices
which allow us to eliminate all those non-terminal symbols indicated by the
corresponding string:

(E ! (F; a1;1a1;2:::an;1an;2a0;1:::a0;l)) ;

((F; a1;1a1;2:::an;1an;2a0;1:::a0;h)!
(F; a1;1a1;2:::an;1an;2a0;1:::a0;h) ; a0;h ! �);

for 1 � h � l;
((F; a1;1a1;2:::an;1an;2a0;1:::a0;h)! (F; a1;1a1;2:::an;1an;2a0;1:::a0;h�1)) ;

for 1 < h � l;
((F; a1;1a1;2:::an;1an;2a0;1)! (F; a1;1a1;2:::an;1an;2)) ;

((F; a1;1:::ai;f)! (F; a1;1:::ai;f) ; ai;f ! �) ;

for 1 � i � n for 1 � f � 2;
((F; a1;1:::ai;2)! (F; a1;1:::ai;1)) ;

for 1 � i � n;
((F; a1;1:::ai;1)! (F; a1;1:::ai�1;2)) ;

for 1 < i � n; and
((F; a1;1)! �) :

In that way, we can eliminate all remaining non-terminal symbols and
extract the terminal result provided we make the correct non-deterministic
choices for the matrices to be applied. If at least one of the guesses is
not correct, then not all the remaining non-terminal symbols are erased
from the sentential form obtained after having simulated a computation in
the P colony by the matrix grammar. From the explanations given so far it
should have become clear that we can derive a terminal word w in the matrix

16

grammar G if and only if the Parikh vector of w is the result of a halting
computation in �; which proves the inclusion NPCOLseq(�; �) � PsMAT:

To complete the proof of the theorem, it only remains to prove the
inclusion

PsMAT � NRMpb:

Although the equality PsMAT = NRMpb is quite folklore, we sketch a
proof of the inclusion PsMAT � NRMpb in order to have included complete
proofs of all results stated in this paper:

Let G = (N;T; S;M) be a matrix grammar G = (N;T; S;M); without
loss of generality we assume G to be in the f-binary normal form. We
then construct a partially blind register machine M 0 = (m;P; 1; n) with
Ps (L (G)) = L (M 0) as follows:

We bijectively label the matrices in M with 1; :::; n: For each symbol in
V = N [T we use a register named by this symbol.

1. The initial matrix 1 : (S ! XA); with X 2 N1; A 2 N2; is simulated
by the instructions

1 : (S (S) ; (10; 1) ; 10) ; (10; 1) : (A (A) ; l1; (1; 2)) ;

(1; 2) : (S (A) ; (10; 2) ; 10) ; (10; 2) : (A (A) ; l2; 10) ; ...,

(1; k) : (S (A) ; (10; k) ; 10) ; (10; k) : (A (A) ; lk; 1
0) ;

where l1; :::; lk are chosen in such a way that these are exactly all the
labels of matrices which are of the form (X ! Y;A! x);

2. The matrices l : (X ! Y;A ! x); with X;Y 2 N1; A 2 N2; x 2
(N2 [T)�; jxj � 2; are simulated depending on the length of x as
follows:

(a) jxj = 0 :
l : (S (A) ; l1; (1; 2)) ;

(l; 2) : (A (A) ; (l0; 2) ; l0) ; (l0; 2) : (S (A) ; l2; (l; 3)) ; ...,
(l; k) : (A (A) ; (l0; k) ; l0) ; (l0; k) : (A (A) ; lk; l

0) ;

(b) x = B :
l : (S (A) ; (l0; 1) ; l0) ; (l0; 1) : (A (B) ; l1; (l; 2)) ;

(l; 2) : (S (B) ; (l0; 2) ; l0) ; (l0; 2) : (A (B) ; l2; (l; 3)) ; ...,
(l; k) : (S (B) ; (l0; k) ; l0) ; (l0; k) : (A (B) ; lk; l

0) ;

17

(c) x = CB :
l : (S (A) ; (l0; 1) ; l0) ; (l0; 1) : (A (C) ; (l00; 1) ; l0) ;

(l00; 1) : (A (B) ; l1; (l; 2)) ;

(l; 2) : (S (B) ; (l0; 2) ; l0) ; (l0; 2) : (A (C) ; (l00; 2) ; l0) ;

(l00; 2) : (A (B) ; l2; (l; 3)) ;...,
(l; k) : (S (B) ; (l0; k) ; l0) ; (l0; k) : (A (C) ; (l00; k) ; l0) ;

(l00; k) : (A (B) ; lk; l
0) ;

in any case, l1; :::; lk are are chosen in such a way that these are exactly
all the labels of matrices which are of the form (X ! Y;A! x);

3. The matrices l : (X ! f;A ! x), with X 2 N1; A 2 N2; and x 2
T �; jxj � 2; again are simulated depending on the length of x as follows:

(a) jxj = 0 :
l : (S (A) ; n; (1; 2)) ;

(b) x = B :
l : (S (A) ; (l0; 1) ; l0) ; (l0; 1) : (A (B) ; n; l0) ;

(c) x = CB :
l : (S (A) ; (l0; 1) ; l0) ; (l0; 1) : (A (C) ; (l00; 1) ; l0) ;

(l00; 1) : (A (B) ; n; l0) ;

4. The �nal matrix n : (f ! �) is simulated by the instruction

n : (S (f) ; lh; l
0
h) :

The whole program P for the partially blind register machine M 0 is
obvious from the construction described above; moreover, when M 0 reaches
the �nal label lh; then all registers representing the numbers of non-terminal
symbols are empty if and only if the simulated derivation in the matrix
grammar G has yielded a terminal word, which completes the proof of the
inclusion PsMAT � NRMpb and the proof of the theorem as well.

4 Conclusion

We have shown that P colonies working in the sequential mode with checking
programs of height at most 5 are computationally complete, whereas when
working in the maximally parallel mode, P colonies using programs again

18

with height 5 but without priorities on the communication rules (i.e., without
checking programs) achieve the same computational power, too.

Already one agent using checking programs is enough to obtain compu-
tational completeness in P colonies working in the sequential mode, which
is a quite surprising result optimal with respect to the number of agents. If
we only allow non-checking programs, even P colonies with only one agent
as well as P colonies with an arbitrary number of agents working in the
sequential mode characterize the family of languages generated by matrix
grammars without appearance checking.

References

[1] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. P¼aun: Grammar Systems:
A Grammatical Approach to Distribution and Cooperation. Gordon and
Breach, London (1994)

[2] J. Dassow, Gh. P¼aun: Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin (1989)

[3] J. Kelemen, A. Kelemenová: A grammar-theoretic treatment of multia-
gent systems. Cybernetics and Systems 23 (1992) 621-633

[4] J. Kelemen, A. Kelemenová, Gh. P¼aun: On the power of a biochemically
inspired simple computing model: P colonies. Downloadable version at
[9]

[5] M. Minsky: Computation. Finite and In�nite Machines. Prentice Hall,
Englewood Cli¤s, NJ (1967)

[6] Gh. P¼aun: Computing with membranes. Journal of Computer and Sys-
tem Sciences 61, 1 (2000) 108�143, and TUCS Research Report 208
(1998) (http://www.tucs.fi)

[7] Gh. P¼aun: Membrane Computing: an Introduction. Springer, Berlin
(2002)

[8] A. Salomaa, G. Rozenberg (eds.): Handbook of Formal Languages.
Springer-Verlag, Berlin (1997)

[9] The P systems webpage http://psystems.disco.unimib.it

19

