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Abstract. A membrane system is a model of computation which is inspired
by some basic features of biological membranes. In this paper we consider
another biologically inspired notion, viz., the notion of a carrier (or vehicle),
as, e.g., used in gene cloning. We investigate the power of membrane systems
where the rules for the evolving of objects are replaced by the rules that carry
objects (by vehicles) through membranes. It turns out that these systems
(even with a small number of membranes, a small number of carriers, and a
small number of passengers taken by carriers) are computationally universal.
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1 Introduction

A fundamental role of biological membranes (see, e.g., [1]) is to ensure that certain sub-
stances (molecules) stay within (do not escape from) the space enclosed by the membrane
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(e.g., a cell), while others, e.g., toxic molecules, stay out of this space. Moreover, mem-
branes allow certain molecules to pass through: e.g., waste products to leave, and certain
nutrients to enter. Also, membranes form a communication structure, allowing messages
(signals) to be received or to be transmitted by the enclosed space. This communication
is crucial for establishing multicellular communication and hence for establishing multi-
cellular organization (see, e.g., [9]). This compartimentation by membranes, with each
enclosed area having its own set of molecules and (enzymes enhancing) reactions, with
the transport of molecules and (hence) the communication through membranes, is the
paradigm underlying membrane systems (see, e.g., [10] and [14], as well as Chapter 3 of
3)).

It must be stressed that membrane systems are not intended to model the functioning
of biological membranes. Rather, membrane systems abstract from a number of principles
underlying the functioning of biological membranes, and use this abstraction to construct a
novel model of computing. Such an approach is typical for the area of Natural Computing,
where one studies all kinds of computing inspired by (or gleaned from) nature.

The membrane structure of a membrane system is a hierarchical arrangement of mem-
branes (understood as three dimensional vesicles), embedded in a skin membrane, the one
which separates the system from its environment. A membrane without any membrane
inside is called elementary. Each membrane defines a region. For an elementary mem-
brane this is the space enclosed by it, while the region of a non-elementary membrane is
the space in-between the membrane and the membranes directly included in it. Figure
1 illustrates these notions. As the reader can see, we give labels (positive integers) to
membranes in order to be able to address them. Since each region is delimited (“from
outside”) by a unique membrane, we will use the labels of membranes to also label the
corresponding regions.
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Figure 1: A membrane structure

Each region contains a multiset of objects and a set of (evolution) rules. The objects
are represented by symbols from a given alphabet. Typically, an evolution rule is of the
form ca — cbin;doutdpere, and it “says” that a copy of the object a, in the presence of a



copy of the catalyst ¢ (this is an object which is never modified, it only assists the evolution
of other objects), is replaced by a copy of the object b and two copies of the object d,
where the copy of b has to “immediately” enter the membrane labeled by j (hence to enter
region j), providing that it is adjacent to the region where the rule is applied, a copy of
object d is sent out of the current membrane, and a copy of d remains in the same region.

In order not to complicate too much many formulations in the sequel of this paper
we will use interchangeably the phrases “an object” and “a copy of an object” — the real
meaning will always be clear from the context of the considerations.

A global clock is assumed (that is, the same clock for all regions of the system). In
each time unit we pass from a configuration of the system to another one, by applying
the rules in a nondeterministic and maximally parallel manner: the objects to evolve
and the rules governing this evolution are chosen in a nondeterministic way; this choice
is “exhaustive” in the sense that no rule can be applied anymore in this evolution step
(there are not enough objects available anymore for any rule to be applied now — this is
the maximality of application). More specifically, it is instructive to see a single step as a
“macro-step” consisting of several “micro-steps” performed one after each other. Consider
a region of the system. First, we assign objects to rules, nondeterministically chosing rules
and objects, until no further assignment is possible (note that the multiplicity of objects
present in each region is crucial in this micro-step). Then, all these objects are removed
from the current multiset of the region. Then, all objects specified by the right hand sides
of the chosen rules are added to this multiset, together with their “transfer commands”:
in;, out, here. Then, all transfers indicated by commands in; and out are executed (if
a copy of an object is introduced in the skin region, i.e., the region delimited by the
skin membrane, and its transfer command is out, then it will be sent out of the system,
to the environment, and it never “comes back”), and copies of objects with the transfer
command here remain in the given region. Then, the transfer commands are removed,
and a “macro-step” is completed.

In this way, one gets transitions between the configurations of the system. A sequence
of transitions is called a computation. A configuration is halting, if no rule is applicable
in any region (nothing can happen anymore). A computation is halting if it reaches a
halting configuration. We consider only halting computations, and the result of such a
computation is the number of objects present in a prespecified region (called the output
region).

Many modifications/extensions of this very basic model described above are discussed
in the literature.

For instance, a priority relation among rules have been considered. This means that
in each region a partial order relation on the set of rules in this region is given — then, a
rule can be chosen (to process a multiset of objects) only if no rule of a higher priority is
applicable.

Another “control device” for membrane systems considered in the literature is a mod-
ification of membrane permeability. Thus, the membranes can be dissolved (the objects of
a dissolved membrane remain in the region surrounding it, while the rules are removed; the
skin membrane cannot be dissolved), or made impermeable (no object can pass through
such a membrane). We refer the reader to, e.g., [3], [10], [12], and [14] for these and some
other modifications of membrane systems.



A typical way of investigating the influence of various features of membrane systems is
to ask about their computational power: e.g., are membrane systems using these features
computationally universal? (see, for example, [10], [6], [14], [16]). Several papers have
also considered solving some NP-complete problems by membrane systems in polynomial
(even linear) time — clearly, the price paid for this reduction of time is the exponential
increase in the number of membranes or objects. This has led to a number of interesting
computation techniques — see, for example, [13], [8], [4], [15].

In this paper we introduce the idea of carriers to be used by membrane systems.
The origin of this idea is twofold. It abstracts the work of the carrier proteins assisting
molecules to pass through membranes (see, e.g., [1]), and it also abstracts from the fun-
damental idea of vectors used in gene cloning (see, e.g., [2]). A vector in gene cloning is
a vehicle that transports the needed gene into the host cell. Two very popular vehicles
that occur in nature are plasmids and bacteriophages. Also, recently plasmids were used
as data registers for the purpose of DNA computing, see, for example, [7]. Here, several
so-called “recognition sites” are planted into a plasmid — they are used as bits represent-
ing the presence/absence of some elements of the data structures considered (for example,
presence/absence of nodes in a graph). Eventually, these plasmids are transported into
E. Coli cells for cloning.

In membrane systems with carriers the objects never evolve (there are no rules for
evolving objects), but rather objects are carried back and forth, by carriers, through the
membranes during the computation process.

Thus, in membrane systems with carriers we have objects of two types: the carri-
ers (“vehicles”) and the passengers. None of them is evolving; the passengers can pass
through membranes only when carried by carriers. We also have objects, of both types, in
the environment. Rules to handle objects (attaching and detaching carriers to/from pas-
sengers, and passing through membranes) are associated with regions, and also with the
environment. Otherwise, the functioning of a membrane system with carriers is the same
as of an ordinary membrane system: rules are applied in a nondeterministic maximally
parallel manner, and transitions between configurations yield computations.

Figure 2: The tree describing the membrane structure from Figure 1

The basic question asked in this paper is the computational strength of membrane



systems with carriers. Somewhat surprisingly, it turns out that such systems are compu-
tationally universal (i.e., they have the power of Turing machines). This holds even for
systems with a reduced number of membranes/carriers and for the systems with a limited
(passenger) transporting power of carriers.

One can perceive sending (exchanging) objects through a membrane as a communica-
tion between the two regions defined by the membrane. Consequently, one can see this
paper as investigating the power of communication in its purest form. In a membrane
system with carriers no objects are created, and no objects are destroyed, and the whole
computation process is accomplished by communication between regions (which is im-
plemented by carriers). Thus, our result on the computational universality of membrane
systems with carriers may be seen as a result on the power of communication in membrane
systems.

2 Membrane Systems with Carriers

A membrane structure is pictorially represented by an Euler-Venn diagram (like the one
in Figure 1); it can be mathematically represented by a tree or by a string of matching
parentheses. The tree of the structure from Figure 1 is given in Figure 2. The same
structure is also represented by the following parentheses expression:

WL LB LG llslslolols 7171414

Since the membranes are having labels, also here the pairs of corresponding parentheses
have labels. It should be noted that the same membrane structure may be represented
by different parenthetic expressions.

The multisets over a given finite support (alphabet) are represented by strings of
symbols. The order of symbols clearly does not matter, the number of copies of an object
in a multiset is given by the number of occurrences of the corresponding symbol in the
string.

We are ready now to introduce membrane systems.

A membrane system, also called a P system (of degree m > 1), with carriers is a
construct

= (0,V,u,wi,...,Wn,R1,...,Rp, E. 1),
where:
1. O is the alphabet of objects;

2. V is the alphabet of carriers (“vehicles”, hence the use of V);

3. p is a membrane structure with m membranes (injectively labeled by positive inte-
gers 1,2,...,m);

4. wy,...,w,, are strings over O UV representing the multisets of objects and carriers
initially present in the regions of the system, where w; is the multiset of objects
present in the region delimited by the membrane (labelled by) 1;



5. Rq,..., R, are finite sets of rules, governing the work of carriers in the regions of
the system; each rule has one of the following forms:

~ vay...a; = [vay...ag], forv e Viay,...,ap € Ok > 1
(attaching rules);

— [vay...ar] = vay...ap, forv e Viay,...,a, € Ok > 1
(detaching rules);

~ [vay...ap] = in, for v € Viay,...,ap € O,k > 0;
when k = 0 we write v — in instead of [v] — in
(carry-in rules);

~ [vay...ay] = out, for v € Viay,...,a, € O,k >0
when k = 0 we write v — out instead of [v] — out
(carry-out rules);

in each of these rules, v is the carrier and ay,...,a; are the passengers.

6. E is a finite set of rules, of the first three forms above, placed in the environment
of the system:;

7. i, € {l,...,m} is an elementary membrane of p.

The meaning of the rules in R;,1 <1 < m, and in F is as follows. By an attaching
rule, the objects ay,...,a; get attached to the carrier v (a multiset of objects plus one
copy of a carrier yields a conglomerate which behaves as a single body; the whole multiset
is represented by a string; the fact that we have a single body is indicated by enclosing this
string in square brackets). A detaching rule performs the opposite operation, separating
all objects and the carrier from a conglomerate [va; ...ag]. By moving-in and moving-
out rules we can move conglomerates through membranes: in indicates that we have to
go to one, nondeterministically chosen, of the adjacent inside membranes (if there is no
lower level membrane, then the rule cannot be applied); out indicates the move outside
the current membrane. Note that carriers can pass alone through membranes, but an
object can never pass through a membrane alone (without being attached to a carrier).
Moreover, an object is never modified by these rules. By carrier rules we can also send
objects out of the system and, by using the rules from E, we can carry objects into the
system, from the environment. At the beginning of a computation, we assume that the
environment contains arbitrarily many copies of each object from O (but no carrier, they
are present only inside the system, in a finite number of copies each, as specified by the
initial multisets wy,...,w,,).

The number m of membranes is called the degree of the system, while the maximum
number of objects which can be attached to a carrier (the maximum & in the rules from
Ry,..., Ry, E) is called the carrying index of the (carriers in the) system.

The multisets of objects and of carriers (including the information about their attach-
ments) present in the m regions of the system, plus the multiset of carriers present outside
the system (maybe with attached passengers) describe the configuration of the system at
a given instance; thus, a configuration is an (m + 1)-tuple of multisets of objects, carriers,



and conglomerates. The initial configuration is (wy,...,w,, D), with no conglomerate
inside the system and no carrier outside it.

We pass from configuration to configuration by using the rules from Ry,..., R, F,
as explained in the Introduction, but now taking into account the specific nature of the
rules of membrane systems with carriers. Again, as customary in P systems, there is
a universal clock, the same for all membranes, and the use of any rule is supposed to
take one time unit. The rules are applied in a maximally parallel manner; the rules and
the objects/carriers for them are chosen in a nondeterministic manner, in an exhaustive
way, so that no rule can be applied anymore to the remaining objects and carriers; the
moving rules move objects and carriers from a region to an adjacent region; objects and
carriers which are not used by the rules at a given step remain unchanged in the resulting
configuration.

A sequence of transitions between configurations of the system constitutes a compu-
tation; a computation is successful if it halts, i.e., it reaches a configuration where no rule
can be applied to any of the objects, carriers, or conglomerates.

The result of a successful computation is the number of objects (carriers are ignored)
present within the membrane with the label 7, in the halting configuration. A computation
which never halts yields no result. The set of all the numbers computed by II is denoted
by N(II).

The family of all sets N(II), computed as above by systems II of degree at most m > 1,
using at most p > 1 carriers, and with the carrying index not exceeding £ > 1, is denoted
by NPC(m,p,k); when any of the parameters m,p, k is not limited, then we write *,
getting in this way families of the form NPC(m,*,%), NPC(*,*, k), etc.

Also, we use NRE to denote the family of recursively enumerable sets of natural
numbers; this is precisely the family of the length sets of recursively enumerable languages,
and we will make below an essential use of this observation.

3 The Computational Power

We will prove that P systems with carriers (even with a small number of membranes, a
small number of carriers, and a small carrying index) are able to simulate Turing machines.
In proofs we need the notion of a matriz grammar with appearance checking (see, e.g.,
5)).

Such a grammar is a construct G = (N, T, S, M, F'), where N, T are disjoint alphabets,
S € N, M is a finite set of sequences of the form (4; — xy, ..., A, — z,), n > 1, of
context-free rules over N UT (with A; € N,z; € (NUT)*, in all cases), and F'is a set of
occurrences of rules in M (N is the nonterminal alphabet, T" is the terminal alphabet, S
is the axiom, while the elements of M are called matrices).

For w,z € (NUT)* we write w = z if there is a matrix (A; = z1, ..., A, = z,) in
M and the strings w; € (N UT)*, 1 <i <n+ 1, such that w = wy, z = w,41, and, for all
1 <1 < n, either w; = wiA;w!, wipy = whaw!, for some wi, w! € (NUT)*, or w; = w;yq,
A; does not appear in w;, and the rule A; — z; appears in F. (The rules of a matrix are
applied in order, possibly skipping the rules in F'if they cannot be applied — therefore we
say that these rules are applied in the appearance checking mode.)



The language generated by G is defined by L(G) = {w € T* | S =* w}. The family
of languages of this form is denoted by M AT,_.

It is known that matrix grammars with appearance checking generate precisely the
family RE of recursively enumerable languages.

A matrix grammar G = (N,T,S, M, F) is said to be in the binary normal form if
N = NyUN,U{S,#}, with these three sets mutually disjoint, and the matrices in M are
in one of the following forms:

1. (S = XA), with X € Nj,A € N,,

2. (X =Y, A—z),with XY € Nj,A€ Ny,z € (NaUT), |z < 2,
3. (X =Y, A— #), with XY € Nj,A € N,,

4. (X = M\ A—z), with X € Nj,Ae N,, and z € T, |z| < 2.

Moreover, there is only one matrix of type 1 and F' consists exactly of all rules A — #
appearing in matrices of type 3; # is caled a trap-symbol, because once introduced, it is
never removed. A matrix of type 4 is used only once, in the last step of a derivation.
According to Lemma 1.3.7 in [5], for each matrix grammar there is an equivalent
matrix grammar in the binary normal form.
We are now ready to prove the main result of this paper.

Theorem 1. NPC(*,%,%) = NPC(m,p,k) = NRE, for allm > 2,p > 3,k > 3.
Proof. For the inclusion NPC(*,%,%) C NRE we can use the Turing-Church thesis

or we can prove it directly, in a straightforward way (but involving a long construction).
The inclusions NPC(m,p, k) C NPC(m',p', k') C NPC(*,%,%), for all 1 <m < m/,1 <
p < p,1 <k <FE, follow directly from the definitions. So, we only have to prove the
inclusion NRE C NPC(2,3,3). To this aim, we make use of the equality RE = M AT,..
More precisely, we have NRE = NMAT,. = {length(L) | L € MAT,.,L C a*} (where
length(L) is the length set of L, that is, the set of lengths of all strings in ). Consequently,
it suffices to consider matrix languages over a one-letter alphabet.

Let G = (N,{a}, S, M, F) be a matrix grammar with appearance checking in the
binary normal form, with N = N; U Ny U {S,#} and matrices of the four forms given
above. Assume that we have s matrices of the form (X — a, A — z), with X € Ny, a €
Ny U{A} 2z € (Ny U {a})*, and ¢ matrices of the form (X — Y, A — #), X,V €
Ni, A € Ny. Consider two new symbols, f,¢ and replace the matrices (X — A, A — z)
by (X — f,A — z); then, replace all matrices (X — a,A — z), a € Ny U {f},
z € (NaUT), by (X = a, A — z¢'),7 = 0,1,2, such that |zg'| = 2. We will still denote
by (X — a, A — z) the so obtained matrices and by GG the so obtained grammar. We
label by m;, 1 <1 < s, the matrices (X — o, A — z) and by msy;, 1 < j <{, the matrices
of the form (X — Y, A — #).

We construct the P system (of degree 2)

II = (O,V, [1[2 ]2] wla‘w%RlaR?aEaz)a

1?



with

0= NU{aadaeafag}U{biaci | 1<:i< S-I_t}a
V = {‘07}0/’ IU//}’
wy, = v'v"d,

wy = vby ... bspcr .. cs XA, for (S — X A) the initial matrix of G,
and the sets of rules constructed in the following way.

1. For each matrix m; : (X — a, A = a1az),1 <1 < s, of G, the following rules are
i Ry:

UbiCiX — [’UbiCiX],
[vbic; X] — out,
[V'e;d] — v'ed,
v'e;dA — [v'e;dA],
[v'e;dA] — out,
[vbioyag] — vhagay,
[v'e;ae] = v'c;ae;

the following rules are in Ry:

[UbZCZX] — ‘UbiCiX,
UbZX — [UbZX],
[vb; X] — out,
v'e;d — [v'ed),
[v'e;d] — in,
[V'e;dA] — v'edA,
v'e; A — [v'e; Al
[v'e; Al — out,
[vbiagan] — in,
[v'e;ae] — in;

and the following rules are in E:

[UbZX] — ‘UbiX,
vhiajay — [vhaas),
[vbayag] — in,
[v'e; Al = v/ A,
v'e;ae — [v'cae],
[v'e;ae] — in.

2. For each matrix m; : (X = Y, A — #),s+ 1 <i <s+1,in G, the following rules
are in Fj:

‘UbiCiX — [’UbiCiX],
[vbic; X] — out,



[V'e;] = v'e;,
v'e; A = [v'e; Al
[v'c;A] — out,
[vb;Ye] = vb;Ye;

the following rules are in Ry:

[szch] — ‘UbiCiX,
UbZX — [UbZX],
[vb; X] — out,

v'e; — [v'e],

[v'e;] — in,

[V'e; Al — i,
[vb;Ye| — in;

and the following rules are in F:

[UbZX] — ‘UbiX,
vb;Ye — [vh;Ye],
[vb;Y'e] — in.

3. Forall: =1,2,...,s 4+t and for each a € N,, the following rules are in Rj:

Usz — [Usz],
[vfb;] — out,
vfe; = [vfel,
[vfe] — out,
vfa— [vfal,
[vfa] = out,
v"b; — [v"by],
[v"b;] — out,
v'e; = [v"¢],
[v"¢;] = out,
v"a — [v"al,
[v"a] — out;

and the following rules are in Ry:

[vfbi] = v fbi,
[vfe] = vfe,
[vfa] — in,
[v"b;] — in,
[v"¢;] = in,
[v"a] — in.

4. Also, the following rules are in Rj:
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v'e — [v'e],
[v'e] — out,
[wfl—=vf,
vfg — [vfygl,
[of] = out,
o7 = 1]
[0"f] = out,
Vg — [v"g],
[v"g] — out;

the following rules are in Ry:

[v'e] — Ve,
vf — [vfl,
[of] = in,
[vfgl = vfyg,
[v"g] = in,
[v" f] — out,
v — out,

v’ — in;

and the following rules are in F:

" f] =",

" — in.
5. For all @ € Ny U{f} we also introduce in R, the rules:

v'a = [v'al,
[v'a] — out,

and the following rule in Ry:
[v'a] = in.

The sets of rules Ry, Ry, and E contain only the rules specified by 1 through 5 above.

This system works as follows.

In the initial configuration we have objects and carriers both in region 2 and in region
1, but the computation starts in region 2 (the carrier v” from region 1 just goes to the
environment and comes back, by using the rules v" — out from R; and v — in from F).
Assume that at some moment in region 2 we have a multiset consisting of one copy of
a symbol X € Ny, some copies of symbols from N, (initially, we have here the multiset
X A), possibly copies of the object a, as well as the objects by, ..., bsit,¢1,. .., Cstt.

Assume that in region 2 we use the rule vb;c; X — [vb;c; X] for some 1 <7 < s. This
will start the simulation of the matrix m; : (X — a, A = aja3), which is done in the
following way. The conglomerate [vb;c; X] exits membrane 2 and gets detached within
membrane 1. The object b; together with v and X will exit the system, the object ¢; will
go inside membrane 2 together with the carrier v’ and the object d, which was present
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in region 1 from the beginning of the computation; v’ and ¢; will bring out also a copy
of A. The conglomerate [v'¢;dA] gets detached within membrane 1, while v’, ¢;, A will go
together into the environment, and d remains in region 1 for a further use.

From the environment, v (together with b;) will bring into the central membrane the
objects aq, ag, while v’ (and ¢;) will bring into membrane 2 the object a together with
the auxiliary object e. Note that « is brought later than «q, as, hence the simulation of
using another matrix cannot be started before completing the simulation of the matrix
m;. The carrier v remains in region 2, the carrier v’ returns to region 1, by making use of
the object e (by using rules introduced in group 4).

Here is an important detail: if there is no copy of A in region 2, then the carrier v’ waits
here until v returns from the environment. In the presence of any symbol a from Ny U{ f},
the carrier v’ uses a rule v'a — [v'a], and the conglomerate [v'a] passes forever back and
forth through membrane 2, preventing in this way the halting of the computation. These
operations are performed by using the rules from group 5. Consequently, the simulation
of the matrix should be complete: both of its rules must be simulated.

The simulation of a matrix m; : (X = VA = #), s+ 1 <1 < s+ 1, is performed
in the following way. Again, the carrier v brings to region 1 the objects b;, ¢;, together
with X. The carrier and the objects b;, X exit then the system, ¢; goes back to the inner
membrane, together with the carrier v’. If A is present in the multiset from region 2, then
the rules v'¢; A — [v'¢; A], [v'¢; A] — out from region 2 and [v'¢; A] — in from region 1 will
be used forever. If A is not present, then v’ waits in region 2 until v comes back, together
with the objects Y and e; then v’ returns to region 1 together with e.

Note that when waiting in region 2, the carrier v’ cannot get attached to an object
from N; U {f}, because no such object is present; when a symbol from N; is brought
back by the carrier v, also e is present, hence we can continue the computation without
entering a cycle.

Therefore, in both cases, the simulation of matrices is correct and we return to a
configuration where all objects b;, ¢;, and the carriers v, v’ are in the same regions as they
were at the beginning of the computation. The fact that we have new copies of the object
e in region 1 is of no importance, because no rule can be applied to this object here and,
moreover, the output of a computation is read in membrane 2.

When the object f is brought to the inner membrane, this means that no symbol from
Ny is present and then, that the derivation in GG should be terminal. In the presence of f,
the carrier v carries to region 2 all objects b;, ¢;, g (the computation is not terminated as
long as at least one symbol b;, ¢; is present in region 2) and it also checks whether or not
the derivation is terminal. If the check yields a negative result, then the rules [vfa] — out
from membrane 2 and [vfa] — in from region 1 will be used forever.

In order to remove also the object f from region 2 we use the carrier v”. During the
whole computation, v” has just passed across membrane 1 by using the rules v — out
and v” — in from region 1 and the environment, respectively. At any moment, this carrier
can also go to membrane 2, by using the rule v — in from region 1. Here v” can get
attached to f and brings it to the environment; then it eventually returns to region 2. If
any symbol b;,¢;, 1 <1 < s+, or B € NyU{g} is present here, then the computation
never stops, because of the rules in group 3 of the form [v"8] — out, [v"3] — in which
are present in regions 2 and 1, respectively. If no such a symbol is present in region 2,
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then the computation stops. Thus, we cannot finish the computation before bringing the
carrier v” in region 2; but if this is done prematurely (while nonterminals from N; or
symbols b;, ¢; are still present), then the computation will never halt.

Consequently, N(II) = {n | " € L(G)}. Because the largest conglomerates in
our system have four elements ([vb;c; X], [vh;a1a], [vb;Ye], etc), we get length(L(G)) €
NPC(2,3,3), which concludes the proof. O

4 Decreasing the Carrying Index

We do not know whether or not the number of carriers in the proof of Theorem 1 can
be reduced (to two or to one), and whether or not the carrying index can be reduced
without increasing the number of carriers used. At the price of the unbounded increase
in the number of carriers, we can reduce the carrying index to two (but we do not know
whether or not this result is optimal).

Theorem 2. NPC(*,%,%) = NPC(m,* k) = NRE, for allm > 2,k > 2.

Proof. As in the previous proof, we start from a matrix grammar G = (N, {a}, S, M, F')
in the binary normal form, with N = Ny U No U {S, #} and with s matrices m; : (X — a,
A = ajay), 1 <1 <s,and ¢t matrices mgy,; 1 (X = Y, A — #),1 <i <t Ifone of ay, oz
above is empty, then we replace it by the dummy symbol g; if « is empty, then we replace
it by the special symbol f. Because a matrix of the form (X — A, A — z) is used at the
last step of a derivation, the use of the corresponding matrix (X — f, A — ) indicates
the end of a derivation.

We construct the P system (of degree 2)

I = (O,V, [1[2 ]2] ‘w17‘w?7RlaR27E72)7

1’
with

O =NUA{a,d,e, f,g} U{bi,c; |1 <i<s+1t},

V ={v,vl | 0<1<s+t},

wy = VoY ... U, .d,

Wy = VU1 . .. Uspiby .. b5 X A, for (S — X A) the initial matrix of G,

and the sets of rules constructed in the following way.

1. For each matrix m; : (X — a, A = a1a3),1 <1 < s, of G, the following rules are
in Rs:

UZbZX — [UZbZX],
[v:6;X] — out,
vidA — [vidA],
[vidA] — out,
[v;a ] = viagag,
[viae] — viae;
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the following rules are in Ry:

[UZbZX] — ’UibiX,
Uz'X — [’UZ'X],
[0;X] — out,
[vibd] — in,
[vidA] — vidA,
viA — [vlA],
[vIA] — out,
[‘Uialoﬂ] — ina
[vice] — in;

and the following rules are in £

[UZX] — ’UZ'X,
viajag = [v;aqan,
(Vo] — in,
[viA] = viA,

viae — [viae],
[vice] — in.

2. For each matrix m; : (X = Y, A = #),s+ 1 <i <s+1,in G, the following rules
are in Rs:

UZbZX — [UZbZX],
[v:6;X] — out,
[U:bz] — U;-bi,
viA — [vlA],
[vIA] — out,
[v;Ye] = v;Ye,
vie — [vle],

[vie] — out;

the following rules are in Ry:

[UZbZX] — ’UibiX,
‘UZ'X — [’UZ'X],
[0;X] — out,
olbi - [olbi],
[Uz/bz] - in7
[VIA] = in,
[v;Ye] — in,
[vie] — vie;

and the following rules are in F:
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3. Forall: =1,2,...,

[‘UZ;X] — ’UZ'X,
v;Ye — [v;Yel,
[v;Ye] — in.

‘Uofbi — [’Uofbi],
[Vofb;] — out,
vofe; — [vofeil,
[vofei] — out,
‘UofCY - [‘UofCY],
[vofa] — out,
vobi — [vgbil,
[vgbi] — out,
voa — [vial,
[voa] — out;

the following rules are in Ry:

Uofb] — U()fb“
vofe| = vofe,

[
[
[v fa] —> in,
[
[

the following rules are in Rj:

vie = [vie],
[vie] — out,
[‘Uof] — ‘UOfa
vofg — [vofgl,
I:‘UOfg] % O‘Ut7
vag — [vggl,
[veg] — out;

the following rules are in Ry:

[vie] — vle,
vof = [vof],
[vof] — in,

[vofg] — vofg,
[veg] — in,
[Uof] — out,

v, — out,

vl = in;

and the following rules are in F:
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s+t and for each a € N, the following rules are in Ry:



[vof1 = vof,

vy = In.
4. Fori=1,...,sand a € Ny U {f} the following rules are in Ry:

vioe = [vial,
[via] — out;

and the following rule is in Ry:
[via] — in.

This system works very much in the same way as the system constructed in the proof
of Theorem 1, but instead of controlling the work of carriers through objects b;, ¢;, we
now also use the subscripts of the carriers. Moreover, the objects b;,1 <1 < s+, and g
are removed from region 2 using the carrier vy (vg is doing nothing as long as the object
f is not present in region 2), while the object f is removed using the carrier vj (v{ plays
the role of v" from the previous proof).

Thus we conclude that N(II) = {n | «" € L(G)}. Since no carrier in the construction
carries more than two passengers, the result holds. a

5 Final Remarks

We have introduced a class of membrane systems where objects do not evolve, but instead
they are carried through membranes by carriers; “sufficient” numbers of copies of each
object are available in the environment. Such systems are shown to be computationally
complete, i.e., they can compute all recursively enumerable sets of natural numbers. This
result is true even for systems with a reduced number of membranes, a reduced number
of carriers, and a reduced carrying index.

It is worth mentioning that the systems with carriers have a property which was not
considered yet in other sorts of membrane systems investigated so far: they observe the
conservation law. This means that no object is created “from nothing” and no object
is destroyed (but we can have arbitrarily many objects inside the system, because the
environment provides sufficient copies of each object).

As explained in the Introduction, membrane systems with carriers perform compu-
tations by communication only. Hence, in our opinion, this paper contributes to the
understanding of the role of communication in membrane systems — in fact, the results
of this paper point out the power of communication in membrane systems. We think
that this paper is only a beginning of a systematic investigation of this topic. A possible
next step would be to classify various sorts of communication (like, e.g., one-way versus
two-way, or contextual versus context-independent), and investigate their power.
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