
Trading Polarizations for Labels in P Systems
with Active Membranes

Artiom ALHAZOV1,2, Linqiang PAN1,3 ?, Gheorghe PĂUN1,4

1 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
{artiome.alhazov@estudiants, lp@fll, gp@astor}.urv.es

2 Institute of Mathematics and Computer Science
Academy of Science of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova
artiom@math.md

3 Department of Control Science and Engineering
Huazhong University of Science and Technology

Wuhan 430074, Hubei, People’s Republic of China
lqpan@mail.hust.edu.cn

4 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucureşti, Romania

george.paun@imar.ro

Abstract. This paper addresses the problem of removing the polariza-
tions of membranes from P systems with active membranes – and this is
achieved (sometimes, in restricted circumstances which we do not specify
here) by allowing the change of membrane labels by means of communi-
cation rules (specifically, by rules sending objects out of membranes) or
by membrane dividing rules. As consequences of these results, we obtain
the universality of P systems with active membranes which are allowed
to change the labels of membranes, but not using polarizations. Univer-
sality results are easily obtained also by direct proofs (this is achieved
also for communication rules which bring objects into membranes). By
direct constructions, we also prove that SAT can be solved in linear time
by systems without polarizations and with label changing possibilities.
Somewhat surprisingly, if non-elementary membranes can be divided,
then SAT can be solved in linear time without using polarizations and
label changing. Several open problems are also formulated.

1 Introduction

Membrane division – inspired from cell division well-known in biology – is the
most investigated way for obtaining an exponential working space in a linear
time, and solving on this basis hard problems, typically NP-complete problems,
in polynomial (often, linear) time. Details can be found in [8, 9, 11]. Recently,
also PSPACE-complete problems were attacked in this way (see [14, 1]).
? Corresponding author.

Informally speaking, in P systems with active membranes one uses six types
of rules: (a) multiset rewriting rules, (b) rules for introducing objects into mem-
branes, (c) rules for sending objects out of membranes, (d) rules for dissolving
membranes, (e) rules for dividing elementary membranes, and (f) rules for di-
viding non-elementary membranes. For most of this paper we discuss only rules
of the first five types; rules for dividing non-elementary membranes are used only
in Section 5, in a particular form which we will introduce directly there.

All these rules are associated with membranes, while membranes have both
a label, from a finite set of labels, and an “electrical polarization”, which can be
+,−, or 0 (for “neutral”). Moreover, rules of types (b), (c), and (e) (as well as
(f), but we ignore for the time being this case) can change the polarization of the
membranes they involve (but always they preserve the label of the membranes;
in particular, the dividing rules of the “standard” form produce two membranes
with the same label as the divided membrane).

However, the electrical charges used in this context are not quite realistic
from a biological point of view. The cell membrane is polarized, but in a different
manner: it is in general positively charged in the external layer and negatively
charged in the inner layer of phospholypidic molecules. On the other hand, it is
possible to have an overall polarization, positive or negative, of inner vesicles,
due to ion exchanges with the inner or upper compartments, but the changes of
these polarizations are done by more complex processes than by applying single
rules as in P systems with active membranes.

Anyway, it is a natural question to consider systems without membrane po-
larizations – this is to say, systems whose membranes always have the same
polarization, for instance, they are neutral. What is the power and what is the
efficiency of such systems? In particular, are they universal? Can they solve SAT
in linear time?

The general questions above remain open and we give here only a partial
answer to them. First, we prove that without polarizations we can compute the
Parikh sets of matrix languages (generated by grammars without appearance
checking), and also the Parikh sets of some non-matrix languages. Then, we
address a simpler problem: what else can be added to P systems with active
membranes such that by removing the polarizations we still get universality and
polynomial solutions to NP-complete problems? A suggestion comes already
from [9], although not introduced there with this goal: let us allow the membrane
division rules to introduce membranes with new labels, not necessarily with the
same label as the divided membrane. The idea can be extended also to rules of
types (b) and (c): change the label of a membrane when introducing or expelling
an object in/from a membrane.

As we shall see below, this works, at least for rules of types (c) and (e): sys-
tems with polarized membranes can be simulated by systems with non-polarized
membranes, providing that we can change the labels of membranes when send-
ing objects out of them or when dividing them. For rules of type (e) the result
is true for systems with only two levels of membranes which never change the
polarization of the skin. Note that this is somewhat similar to the biological

2

observation mentioned above, that the inner vesicles of a cell might be polar-
ized, while, moreover, two levels of membranes is a good approximation of the
structure of a cell.

Pleasantly enough, for proving the universality of P systems with active mem-
branes (and polarizations), systems of depth two suffice, and they do not change
the polarization of the skin. Thus, in both cases, we get the universality as a
corollary of the above mentioned results (and the known proof of universality
from [5, 9] – slightly modified).

The case of rules of type (b) remains open: can a P system with active
membranes and polarizations be simulated by a system without polarizations
but allowed to change the label of membranes when introducing objects into
them? Even without such a simulation lemma, the universality can be obtained
also in this case, by a (surprisingly simple) direct proof.

Unfortunately, the proofs of the two simulation results mentioned above have
a drawback: they introduce non-determinism in the functioning of the system.
This means that they do not imply that SAT can be solved in polynomial time
by systems without polarizations – but this is directly proven, for the two “easy”
cases, of changing labels by rules of type (c), or (e) (and again it remains open
for the case of rules of type (b)).

An interesting result is obtained when using rules of type (f), for dividing
non-elementary membranes: SAT is solved in linear time (by a system constructed
in semi-uniform manner) without using polarizations and label changing (the
universality remains open in this case).

2 P Systems with Active Membranes

We assume the reader to be familiar with basic elements of complexity the-
ory and formal language theory, for instance, from [6, 13, 12], as well as with
the basic knowledge of membrane computing, for instance, from [9] (details
and recent results from membrane computing can be found at the web address
http://psystems.disco.unimib.it). We only mention that REG, CF, CS, RE
denote the families of languages from Chomsky hierarchy (regular, context-free,
context-sensitive, recursively enumerable languages, respectively), and that for
a family FL, by PsFL we denote the family of Parikh sets of languages in FL;
as usual, the Parikh mapping associated with an alphabet V is denoted by ΨV .

A P system with active membranes (and electrical charges) is a construct

Π = (O, H, µ, w1, . . . , wm, R),

where:

1. m ≥ 1 (the initial degree of the system);
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, consisting of m membranes, labeled (not neces-

sarily in a one-to-one manner) with elements of H;

3

5. w1, . . . , wm are strings over O, describing the multisets of objects placed in
the m regions of µ;

6. R is a finite set of developmental rules, of the following forms:
(a) [a → v]e

h
,

for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes, but not directly involving
the membranes, in the sense that the membranes are neither taking part
in the application of these rules nor are they modified by them);

(b) a[]e1
h
→ [b]e2

h
,

for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is introduced in the membrane, possibly
modified during this process; also the polarization of the membrane can
be modified, but not its label);

(c) [a]e1
h → []e2

h b,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly
modified during this process; also the polarization of the membrane can
be modified, but not its label);

(d) [a]e
h → b,

for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e) [a]e1
h → [b]e2

h [c]e3
h ,

for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, possibly
of different polarizations; the object specified in the rule is replaced in
the two new membranes by possibly new objects).

(Note that, in order to simplify the writing, in contrast to the style customary
in the literature, we have omitted the label of the left parenthesis from a pair
of parentheses which identifies a membrane. For the time being, we have also
omitted the rules for dividing non-elementary membranes, usually identified as
being “of type (f)”.) The rules of type (a) are applied in the parallel way (all
objects which can evolve by such a rule should do it), while the rules of types
(b), (c), (d), (e) are used sequentially, in the sense that one membrane can be used
by at most one rule of these types at a time. In total, the rules are used in the non-
deterministic maximally parallel manner: all objects and all membranes which
can evolve, should evolve. Only halting computations give a result, and the result
is the vector of natural numbers describing the multiplicity of objects expelled
into the environment during the computation; the set of vectors computed in this
way by the various halting computations in Π is denoted by Ps(Π). (Non-halting
computations give no output.) By PsOP (a, b, c, d, e) we denote the family of sets
Ps(Π) computed as sketched above by systems using all types of rules; when
rules of a certain type are not used the corresponding letter a, b, c, d, e will be
missing. Details can be found in [9] – including the proof of the following result.

4

Theorem 1. PsOP (a, b, c) = PsRE.

In [9], this result is given for sets of natural numbers, hence one-dimensional
vectors, but the extension to vectors of arbitrary dimensions is obvious and it
holds with the same proof.

3 Removing the Polarizations

Let us consider now rules – of types (a)− (e) – without polarizations. They are
of the following forms (because “no polarization” means “neutral polarization”,
we add the subscript 0 to the previous letters identifying the five types of rules;
as above, O is the alphabet of objects and H is the set of labels of membranes):

(a0) [a → v]h, where a ∈ O, v ∈ O∗, and h ∈ H,
(b0) a[]

h
→ [b]

h
, where a, b ∈ O and h ∈ H,

(c0) [a]h → []hb, where a, b ∈ O and h ∈ H,
(d0) [a]h → b, where a, b ∈ O and h ∈ H,
(e0) [a]h → [b]h[c]h, where a, b, c ∈ O and h ∈ H.

What is the power of P systems using such rules? Specifically: what is the size
of the family PsOP (a0, b0, c0, d0, e0)? Is it equal to PsRE? If not (as we expect),
then what about its relation with PsET0L (the Parikh sets of ET0L languages)?
We leave these problems open, and we only prove here that we can cover in this
way at least the Parikh sets of languages generated by matrix grammars without
appearance checking.

Because the notion of a matrix grammar will be also used below, we introduce
it here in its general form.

A matrix grammar with appearance checking is a construct G = (N, T, S,M,
F), where N, T are disjoint alphabets, S ∈ N , M is a finite set of sequences of
the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪T (with
Ai ∈ N, xi ∈ (N ∪ T)∗, in all cases), and F is a set of occurrences of rules in
M (N is the nonterminal alphabet, T is the terminal alphabet, S is the axiom,
while the elements of M are called matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1,
. . . , An → xn) in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that
w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i ,

for some w′i, w
′′
i ∈ (N ∪ T)∗, or wi = wi+1, Ai does not appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied – therefore we say that these
rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. If the set F is empty,
then the grammar is said to be without appearance checking; the corresponding
family of languages is denoted by MAT .

It is known that CF ⊂ MAT ⊂ MATac = RE, PsREG = PsCF ⊂
PsMAT ⊂ PsRE, and that CS − MAT 6= ∅, PsCS − PsMAT 6= ∅ (for
instance, the one-letter languages in MAT are known to be regular, [4]).

5

A matrix grammar G = (N, T, S,M, F) is said to be in the binary normal
form if N = N1 ∪N2 ∪ {S, #}, with these three sets mutually disjoint, and the
matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y, A → #), with X, Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in
the form (S → XinitAinit), in order to fix the symbols X, A present in it), and
F consists exactly of all rules A → # appearing in matrices of type 3; # is a
trap-symbol, because once introduced, it is never removed. A matrix of type 4
is used only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary
normal form (this is true both for grammars with appearance checking and
without appearance checking; in the latter case, the set F and the matrices of
type 3 are missing). Details can be found in [3].

The following result is non-trivial, because PsMAT − PsCF 6= ∅ (there are
non-semilinear sets of vectors in PsMAT , which is not the case with PsCF),
but gives only a partial answer to the question how powerful P systems without
polarizations are.

Theorem 2. PsMAT ⊂ PsOP (a0, b0, c0, d0, e0), strict inclusion.

Proof. Let us consider a matrix grammar (without appearance checking) G =
(N, T, S,M) in the binary normal form, hence with N = N1∪N2∪{S}, and with
matrices of the types 1, 2, 4 specified above. We assume all matrices of types 2
and 4 labeled in a one-to-one manner with m2,m3, . . . , mt, for t − 1 being the
number of these matrices (note that the subscripts of labels start from 2). The
terminal matrices mi : (X → λ,A → x) are replaced by mi : (X → f,A → x),
for f being a new symbol (the label of the matrix remains the same).

We construct the P system

Π = (O, {1, 2}, [[]
2
]
1
, X̄initĀinit, c, R),

where

O = N1 ∪N2 ∪ T ∪ {X̄ | X ∈ N1} ∪ {Ā, A′, A′′ | A ∈ N2}
∪ {Xi,j , Xi | X ∈ N1, 1 ≤ i ≤ t + 1,−1 ≤ j ≤ t}
∪ {Ai,j , Ai, A

′
i | A ∈ N2, 1 ≤ i ≤ t + 1, 0 ≤ j ≤ t}

∪ {c, c1, c2, c
′
2, f, f̄ , #} ∪ {di | 0 ≤ i ≤ t + 1},

and the set R contains the following rules (together with the rules we give expla-
nations about their use and the functioning of the system Π; in the rules below,
we use the morphisms hj , 1 ≤ j ≤ t + 1, defined by hj(A) = Aj for all A ∈ N2,
and hj(a) = a for all a ∈ T):

6

1. [X̄ → X]1, for all X ∈ N1,
[Ā → A]1, for all A ∈ N2,
[c]2 → [c1]2[c2]2,
[c → #]2.

While all symbols from the skin region lose the bars, the inner membrane is
divided into two membranes with the same label 2 and containing the auxiliary
symbols c1, c2, respectively. In the membrane containing c1 we will simulate a
matrix of G; at the end of the simulation, this membrane will be dissolved, and
the second membrane will be used as starting membrane with label 2, for a
further division.

2. X[]2 → [Xi,−1]2, for some mi : (X → Y, A → x) ∈ M , 2 ≤ i ≤ t,
[X → #]1, for all X ∈ N1,
[c2]2 → []2c

′
2,

[c2 → #]2,
[A → A′]

1
, for all A ∈ N2.

In the second step of the computation, all symbols A ∈ N2 get primed, while the
unique symbol from N1 should enter the membrane with label 2 having inside
the object c1 – otherwise, either X introduces the trap-object # in the skin
region, or, if it enters the membrane containing the object c2, this object cannot
exit the membrane and introduces #.

3. [Xi,−1 → Xi,0]2, for all X ∈ N1, 2 ≤ i ≤ t,
[A′ → A′′]1, for all A ∈ N2,
B′[]2 → [Bj,0]2, for some mj : (Z → U,B → y) ∈ M , 2 ≤ j ≤ t,
[c′2 → #]1,
c′2[]2 → [d0]2.

In the third step, also a symbol B ∈ N2 can enter into membrane 2 which
contains c1; we will see below that this is obligatory, otherwise the symbol X –
with subscripts – already present there will introduce #. At the same time, all
symbols from the skin get double primed and c′2 enters the second membrane
with label 2 transformed into d0; we will also see below that if c′2 enters the first
membrane with label 2, then the computation will never halt.

4. [Xi,0 → Xi,1]2, for all X ∈ N1, 2 ≤ i ≤ t,
[Bj,0 → Bj,1]2, for all A ∈ N2, 2 ≤ j ≤ t,
[d0 → d1]2,
[A′′ → A1]1, for all A ∈ N2.

All symbols “start to count”, from 1 to t + 1. Note that during this counting no
symbol from the skin membrane can enter any of the inner membranes.

5. [Xi,k → Xi,k+1]2, for all X ∈ N1, 2 ≤ i ≤ t, 1 ≤ k ≤ i− 1,
[Bj,k → Bj,k+1]2, for all A ∈ N2, 2 ≤ j ≤ t, 1 ≤ k ≤ j − 2,
[dk → dk+1]2, for all 1 ≤ k ≤ t,
[Ak → Ak+1]1, for all A ∈ N2, 1 ≤ k ≤ t.

7

The rules used during the counting.

6. [Bj,j−1]2 → B′
j , for all B ∈ N2, 2 ≤ j ≤ t,

[Xi,i → #]2, for all X ∈ N1, 2 ≤ i ≤ t.

Only the symbol from N2 can dissolve membrane 2, and this happens in the
moment when it is going to get a subscript j, k with j = k. If i < j, then X
gets the subscript i, i before dissolving the membrane, hence the trap-symbol is
introduced. This will also happen if no symbol from N2 were present in this mem-
brane. If, however, j < i, then the membrane will be “prematurely dissolved”,
and a symbol Xi,k with i > k will be left free in the skin region, introducing #
there – see the rules below. In this way we check that the symbols Xi,−1, Bj,0

introduced in the membrane have i = j, hence correspond to the same matrix
of G.

7. [Xi,k → #]1, for all X ∈ N1, 2 ≤ i ≤ t, 1 ≤ k ≤ i− 1,
[dk → #]1, for all k ≤ t,
[c1 → λ]1,
[Xi,i → Yi+1]1,
[B′

i → hi+1(x)]1, for mi : (X → Y, B → x), Y ∈ N1 ∪ {f}.
The first rule ensures the correct simulation of the matrix mi, the second one
ensures the fact that in the third step d0 was sent to the second membrane
with label 2, while the last two rules actually simulate the matrix. Note that
in the meantime, all symbols from N2 present in the skin have continued to
increase their subscript – and the same with dk from the second membrane 2.
The symbol Y and the nonterminals from x are introduced with the subscript
equal to the subscripts of all these symbols from the skin membrane, in order to
continue together to count to t + 1; this is important for the synchronization of
the system.

8. [Yt+1 → Ȳ]1, for all Y ∈ N1 ∪ {f},
[At+1 → Ā]1, for all A ∈ N2,
[dt+1 → c]2.

When all symbols get the subscript t+1, we can return to a configuration similar
to the initial one, with all nonterminals barred, and with c in membrane 2, hence
we can iterate the process, and simulate another matrix of G.

9. f̄ []2 → [f̄]2,
[f̄]

2
→ f̄ ,

[Ai,k → #]1, for all A ∈ N2, 1 ≤ k < i ≤ t,
[dt+1 → λ]2,
[# → #]s, s = 1, 2.

After using a terminal matrix of G, we have to also remove the symbols d and c,
and, furthermore, no symbol from N2 should be present in the system. Assume
that this is not the case, hence we have at least f̄ , Ā in the skin membrane, for
some A ∈ N2, and c in membrane 2. If f̄ enters membrane 2, then c introduces

8

#, hence membrane 2 should be divided, while f̄ waits and Ā is replaced by A.
In the next step f̄ enters the first membrane 2 – the second one should be used
by c2, as we have seen above – and A becomes A′. Now, if f̄ dissolves membrane
2, then A′ should pass to A′′ and then starts to count; if A′ enters membrane 2,
then f̄ waits, but it dissolves the membrane in the next step, and Ai,1 is released
into the skin region, where it will introduce #. If f̄ enters the second membrane
2 and dissolves it, then a symbol dk is released, and again we introduce # in
the skin region. If no membrane is present, then A will count forever from 1 to
t + 1, repeatedly. Thus, the only way to stop is to correctly simulate a terminal
derivation in G, removing dt+1 at the same time when introducing f̄ .)

10. [a]1 → []1a, for all a ∈ T .

Any terminal symbol is sent out at any time of the computation.

From the previous explanations it is easy to see that ΨT (L(G)) = Ps(Π),
which proves the inclusion PsMAT ⊆ PsOP (a0, b0, c0, d0, e0) (note that rules
of all five types were used).

In order to see that the inclusion is proper, consider the system

Π = ({a}, {1, 2}, [[]2]1, λ, a, {[a → aa]2, [a]2 → a, [a]1 → []1a}),
which generates the set Ps(Π) = {(2n − 1) | n ≥ 1} /∈ PsMAT . ut

We do not know whether the previous result can be improved by avoiding
the use of some types of rules, or – more interesting – strengthening it to a
characterization of PsRE. Because we believe that such a characterization is
not possible, a related question is to consider further ingredients which can
increase the power. A possibility is to use a priority relation among rules, of
a weak type (a general priority is known to lead to universality, see [9]); for
example, we can use always the rules of some type with priority over the rules
of another type (e.g., always the communication having priority on dividing a
membrane). This possibility, as well as the general problem concerning the size
of the family PsOP (a0, b0, c0, d0, e0), remains as a task for the reader, and we
consider in the next section another way to “pay” for not using polarizations:
changing the labels of membranes.

4 The Power of Changing Labels

Rules of types (a), (b), (c) were introduced without the capability of changing
the label of membranes they involve (this makes no sense for dissolving rules),
but in [9] one already considers rules of type (e) which can change both the label
and the polarization of membranes. Such rules are of the form

[a]e1
h1
→ [b]e2

h2
[c]e3

h3
, with a, b, c ∈ O, e1, e2, e3 ∈ {+,−, 0}, and h1, h2, h3 ∈ H,

and they have been called of type (e′). We extend this idea and this notation to
rules of types (e0), (b0), and (c0): their primed versions indicate the fact that
the labels can be changed. Specifically, these rules are of the following forms:

9

(e′0) [a]h1
→ [b]h2

[c]h3
, where a, b, c ∈ O and h1, h2, h3 ∈ H,

(b′0) a[]h1
→ [b]h2

, where a, b ∈ O and h1, h2 ∈ H,
(c′0) [a]h1

→ []h2
b, where a, b ∈ O and h1, h2 ∈ H.

The families of sets of vectors of natural numbers generated by systems us-
ing a certain combination of types of rules, with or without subscripts or su-
perscripts, are denoted as usual, by PsOP followed by the “names” of the used
types of rules.

Of course, rules of type (α) or (α′0) are stronger than rules of type (α0).
Are these relations (“stronger/weaker”) proper? We are going to show that this
seems to be the case when passing from (α0) to (α′0).

4.1 Simulation Results

We start by considering the case when rules of type (e′0) are used. They help
at least for a class of systems of a restricted type. Specifically, we say that a
P system (with active membranes and using polarizations) is of type D2S0 if
its membrane structure has only two levels (depth two, hence D2) and its skin
membrane never changes the polarization (hence it remains neutral as at the
beginning, a fact indicated by S0).

Lemma 1. Any P system of type D2S0 can be simulated by a system using rules
of types (a0), (b0), (c0), (d0), (e′0).

Proof. Let us consider a system Π = (O, H, µ, w1, . . . , wm, R) of type D2S0. We
assume that the skin membrane is labeled with 1 and that this label is never used
for another membrane (this can be easily achieved, by relabeling the membranes,
taking into account that the skin membrane is never divided). We also assume
the rules of type (b) from R (if any) labeled in a one-to-one manner with elements
of a set B (hence we write these rules in the form r : a[]e1

h → [b]e2
h . Consider

also the alphabet O1 = {a1 | a ∈ O} and the morphism ϕ : O∗ −→ O∗1 defined
by ϕ(a) = a1, a ∈ O.

We construct the system (without polarizations)

Π ′ = (O′,H ′, µ′, w1, . . . , wm, R′),

with the following components:

O′ = O ∪ {ai, a
′
i, a

′′
i | a ∈ O, 1 ≤ i ≤ 5}

∪ {b(r)
2 | r : a[]e1

h → [b]e2
h is a rule of type (b) from R}

∪ {d, $, $′, $′′,#},
H ′ = {〈h, e〉, 〈h′, e〉 | h ∈ H, e ∈ {+,−, 0}} ∪ {0},
µ′ is the membrane structure µ with each membrane with label h

(and polarization 0, as it is the case at the beginning)
labeled with 〈h, 0〉,

and with the set R′ constructed as follows.

10

• For each rule [a → x]e
h ∈ R of type (a), we introduce in R′ the rules:

1. [a → ϕ(x)] 〈h,e〉,
2. [b1 → b′1] 〈h,e〉,

[b1 → b′1] 〈h′,e〉,
3. [b′1 → b′′1] 〈h,e〉,

[b′1 → b′′1] 〈h′,e〉,
4. [b′′1 → b] 〈h,e〉,

[b′′1 → b] 〈h′,e〉, for all b ∈ O.

• For each rule r : a[]e1
h → [b]e2

h ∈ R of type (b), we introduce in R′ the rules:

1. a[] 〈h,e1〉 → [b
(r)
2] 〈h,e1〉,

2. [b
(r)
2] 〈h,e1〉 → [b2] 〈h′,e2〉[d]

0
,

[b
(r)
2 → #] 〈h,e1〉,

3. [b2 → b′2$
′] 〈h′,e2〉,

4. [b′2 → b] 〈h′,e2〉,
[$′] 〈h′,e2〉 → [$′′] 〈h,e2〉[d]0.

• For each rule [a]e1
h → []e2

h b ∈ R of type (c), with h 6= 1, we introduce in
R′ the rules:

1. [a] 〈h,e1〉 → [b3] 〈h′,e2〉[d]0,
2. [b3 → b′3$] 〈h′,e2〉,
3. [b′3] 〈h′,e2〉 → [] 〈h′,e2〉b

′′
3 ,

[$ → $′] 〈h′,e2〉,
4. [b′′3 → b]g, for all g ∈ H ′,

[$′] 〈h′,e2〉 → [$′′] 〈h,e2〉[d]0.

• For each rule [a]e
h → b ∈ R of type (d), we introduce in R′ the rules:

1. [a] 〈h,e〉 → [b4] 〈h′,e〉[d]0,
2. [b4 → b′4] 〈h′,e〉,
3. [b′4 → b′′4] 〈h′,e〉,
4. [b′′4] 〈h′,e〉 → b.

• For each rule [a]e1
h → [b]e2

h [c]e3
h ∈ R of type (e), we introduce in R′ the rules:

1. [a] 〈h,e1〉 → [b5] 〈h′,e2〉[c5] 〈h′,e3〉,
2. [α5 → α′5$] 〈h′,e〉, for all α ∈ O, e ∈ {+,−, 0},
3. [α′5 → α′′5] 〈h′,e〉, for all α ∈ O, e ∈ {+,−, 0},

[$ → $′] 〈h′,e〉, for all e ∈ {+,−, 0},

11

4. [α′′5 → α] 〈h′,e〉, for all α ∈ O, e ∈ {+,−, 0},
[$′] 〈h′,e〉 → [$′′] 〈h,e〉[d]0, for all e ∈ {+,−, 0}.

• Finally, for each rule [a]01 → []01b of R we introduce in R′ the rule
[a] 〈1,0〉 → [] 〈1,0〉b,

• and then, for all labels g ∈ H ′ we introduce the rule
[# → #]g.

The idea behind this construction should be visible: instead of working with
membranes with labels and polarizations, []e

h, we work with membranes having
only labels, [] 〈h,e〉, with the polarizations “stored” as the second component
of the labels; by handling labels we can then handle polarizations; the problem
is that the labels are changed only by rules of type (e′0); moreover, we have to
carefully arrange the computations in Π ′ in order not to lose the synchronization
of computations in Π.

The synchronization is obtained by using symbols with subscripts 1, 2, 3,
4, 5, associated with rules of R of the types (a), (b), (c), (d), (e), respectively,
sometimes priming these symbols, and also using labels not only of the form
〈h, e〉, but also of the form 〈h′, e〉. Each step of a computation in Π is simulated
by four steps of a computation in Π ′. In the first step all symbols are like in
O, without subscripts or primes, and the labels of membranes are of the form
〈h, e〉. After the first step, all objects which can evolve by a rule in R can also
evolve by a rule in R′ and the objects introduced in this way have subscripts;
these objects have now to evolve in a well determined manner, completing the
simulation of the rule in R and returning to objects from O only in the last
step, the fourth one. Moreover, the simulation of rules of types (c), (d), (e) starts
by using a rule of R′ of type (e′0), which introduces a “main membrane” with
the label of the type 〈h′, e〉 (with the label h ∈ H primed), corresponding to the
membrane []e

h from µ whose rule is simulated, as well as a “dummy membrane”,
[d]0, containing the “dummy object” d which never evolves (no rule is associated
with this membrane).

In the simulation of a rule of type (b) one introduces a label of type 〈h′, e〉
in the second step. In the simulation of rules of all types (b), (c), (e) a further
division is performed in the fourth step, returning the label 〈h′, e〉 to 〈h, e〉, thus
making possible the simulation of another rule from R.

Because the case of rules of type (b) is different from the case of the other
rules, we describe it in some details. Assume that we have a membrane []e1

h
where we want to use a rule r : a[]e1

h → [b]e2
h . We start by using the rule

a[] 〈h,e1〉 → [b
(r)
2] 〈h,e1〉. This is possible, as the symbol a and the label 〈h, e1〉

are available. (In parallel with the rule r, no further rule of types (b), (c), (d), (e)
can involve the same membrane, but a maximal use of rules of type (a) should
be executed; this is clearly possible also in Π ′.) The label of the membrane was
not changed, but only the symbol b got both the subscript 2 (as associated with
rules of type (b)) and the superscript (r), to “remember” which rule we have to
simulate. In the next step, because the label of the membrane is the same as in

12

the first step, we can involve this membrane in rules of types (b), (c), (d), (e), and
this would be wrong, because it does not correspond to a correct simulation of
rules from R (the simulation of the rule r was not completed). This is prevented
by the rule [b

(r)
2 → #] 〈h,e1〉: because of the maximal parallelism, it has to be

applied, and this will lead to a non-halting computation. Therefore, we have to
use the rule [b

(r)
2] 〈h,e1〉 → [b2] 〈h′,e2〉[d]0, which continues the correct simulation:

the label was changed to 〈h′, e2〉, hence no new simulation can be started in this
membrane (while the rules of R′ corresponding to rules of type (a) from R can
be applied also in the presence of this label). We continue in a deterministic way
with the rule [b2 → b′2$

′] 〈h′,e2〉 (step 3 of the simulation), and we conclude by
using the rules [b′2 → b] 〈h′,e2〉, [$′] 〈h′,e2〉 → [$′′] 〈h,e2〉[d]0, in parallel. We have
returned to a configuration as that we have started with, hence the simulation
of rules from R can continue. Note the role of the superscript (r) in step 2, when
it was necessary to know the new polarization e2 of the membrane, as well as
the role of the special object $, primed or not, which takes care of returning the
membrane to a label 〈h, e〉 in the fourth step of the simulation.

The simulation of rules of other types than (b) is easier, in the sense that it
is deterministic, no trap-object is used in order to avoid “wrong” simulations.

In any moment, the objects which were sent out of the system by rules of R
are also sent out of µ′ by the rules of R′.

In all this construction, it is crucial that the skin never changes its polar-
ization (we cannot divide the skin, hence we cannot handle such a case in this
framework), and that we have inside the skin only elementary membranes (nei-
ther the change of polarization of a non-elementary membrane can be handled,
because we cannot divide non-elementary membranes). With these observations,
we conclude that the statement in the lemma holds. ut

In the previous construction the number of membranes with label 0 can grow
arbitrarily large. We can prevent this by introducing the following rules in R′:

[d → d′]0,
[a → λ]0, for all a ∈ O′,
[d′]

0
→ d′′,

[d′′ → λ]1.

In this way, all objects from membranes with label 0 are removed, in parallel
with changing d to d′, in the next step the membrane is dissolved, and after that
the new object d′′ is erased.

We now pass to the case where we can change the label of membranes by
means of rules of type (c).

Lemma 2. Any P system with rules of types (a), (b), (c), (d), (e) can be simu-
lated by a system using rules of types (a0), (b0), (c′0), (d0), (e0).

Proof. We start again from a system Π = (O, H, µ, w1, . . . , wm, R). Without loss
of generality we assume that no membrane has the label s. We also assume all the

13

rules from R labeled in a one-to-one manner with elements of a set B. Consider
again the alphabet O1 = {a1 | a ∈ O} and the morphism ϕ : O∗ −→ O∗1 defined
by ϕ(a) = a1, a ∈ O.

We construct the system (without polarizations)

Π ′ = (O′,H ′, µ′, w1, . . . , wm, R′),

with the following components:

O′ = O ∪ {a′, a1, a
′
1, a

′′
1 , a′′′1 | a ∈ O} ∪ {a(r), a′(r), a′′(r), a′′′(r) | a ∈ O, r ∈ B}

∪ {ae | a ∈ O, e ∈ {+,−, 0}} ∪ {$e | e ∈ {+,−, 0}} ∪ {$, $′,#},
H ′ = {〈h, e〉, 〈h, e, r〉 | h ∈ H, e ∈ {+,−, 0}, r ∈ B} ∪ {s},
µ′ is obtained from the membrane structure µ by using a new membrane,

with label s, to enclose the membrane structure µ (this is the skin
membrane of µ′) and each membrane in µ with label h being
labeled with 〈h, 0〉,

and with the set R′ constructed as follows.

• For each rule [a → x]e
h ∈ R of type (a), we introduce in R′ the rules:

1. [a → ϕ(x)] 〈h,e〉,
2. [b1 → b′1] 〈h,e〉,

[b1 → b′1] 〈h,e,r〉,
3. [b′1 → b′′1] 〈h,e〉,

[b′1 → b′′1] 〈h,e,r〉,
4. [b′′1 → b′′′1] 〈h,e〉,

[b′′1 → b′′′1] 〈h,e,r〉,
5. [b′′′1 → b] 〈h,e〉,

[b′′′1 → b] 〈h,e,r〉, for all b ∈ O, and r ∈ B.

• For each rule r : a[]e1
h → [b]e2

h ∈ R of type (b), we introduce in R′ the rules:

1. a[] 〈h,e1〉 → [b(r)] 〈h,e1〉,

2. [b(r)] 〈h,e1〉 → [] 〈h,e2,r〉b
′(r),

[b(r) → #]g, for all g ∈ {〈h, e〉 | h ∈ H, e ∈ {+,−, 0}},
3. b′(r)[] 〈h,e2,r〉 → [b(r)] 〈h,e2,r〉,

4. [b(r) → b′$] 〈h,e2,r〉,
5. [b′ → b] 〈h,e2,r〉,

[$] 〈h,e2,r〉 → [] 〈h,e2〉$
′.

• For each rule r : [a]e1
h → []e2

h b ∈ R of type (c), we introduce in R′ the rules:

14

1. [a] 〈h,e1〉 → [] 〈h,e2,r〉b
′(r),

2. b′(r)[] 〈h,e2,r〉 → [b(r)] 〈h,e2,r〉,

3. [b(r) → b′′(r)] 〈h,e2,r〉,

4. [b′′(r) → b′′′(r)] 〈h,e2,r〉,
5. [b′′′(r)] 〈h,e2,r〉 → [] 〈h,e2〉b.

• For each rule r : [a]e
h → b ∈ R of type (d), we introduce in R′ the rules:

1. [a] 〈h,e〉 → [] 〈h,e,r〉b
′(r),

2. b′(r)[] 〈h,e,r〉 → [b(r)] 〈h,e,r〉,

3. [b(r) → b′′(r)] 〈h,e,r〉,

4. [b′′(r) → b′′′(r)] 〈h,e,r〉,

5. [b′′′(r)] 〈h,e,r〉 → b.

• For each rule r : [a]e1
h → [b]e2

h [c]e3
h ∈ R of type (e), we introduce in R′ the

rules:

1. [a] 〈h,e1〉 → [] 〈h,e1,r〉a
′(r),

2. a′(r)[] 〈h,e1,r〉 → [a(r)] 〈h,e1,r〉,

3. [a(r)] 〈h,e1,r〉 → [be2] 〈h,e1,r〉[ce3] 〈h,e1,r〉,
4. [be2 → b′$e2] 〈h,e1,r〉,

[ce3 → c′$e3] 〈h,e1,r〉,
5. [b′ → b] 〈h,e1,r〉,

[c′ → c] 〈h,e1,r〉,
[$ei

] 〈h,e1,r〉 → [] 〈h,ei〉$
′, for i = 2, 3.

• Finally, for the output of the result, we introduce in R′ the rules
[a]s → []sa, for all a ∈ O,

• and then, for all labels g ∈ H ′ we introduce the rule
[# → #]g.

The idea is the same as in the proof of the previous lemma: instead of working
with membranes with labels and polarizations, []e

h, we work with membranes
having only labels, []〈h,e〉, with the polarizations “stored” as the second com-
ponent of the labels. This time, one step of a computation in Π is simulated by
five steps in Π ′, controlled mainly by the superscripts (r) of symbols from O′,
which identify the rule which is simulated. Note that r appears also in labels of
the form 〈h, e, r〉, which correspond to labels of the form 〈h′, e〉 in the previous
proof (in the sense that these labels are always returned to labels 〈h, e〉 only in
the fifth step of simulating a rule of types (b,), (c), (d), (e), thus making possible
the simulation of another rule).

Again, we use the trap-symbol only for ensuring the correct simulation of
rules of type (b), which is different from the case of the other rules, but we do

15

not enter here into details. With the experience of the previous proof, the reader
should be able to see how the computations in Π ′ develop.

In all cases of rules different from type (a) it is important to note that we
change the label of the membrane by sending out of it an object, one copy of
which should come back in the next step. In order to ensure this, both the
membrane “remembers” which kind of objects should come back, because we
have r in the label, and the object “remembers” which kind of membranes has
to enter, because it has the superscript (r). Because of the fact that the number
of copies of objects b′(r) is equal to the number of membranes which send out the
objects b′(r) and because of parallelism, each membrane which previously send
out an object b′(r) will now contain an object b(r).

At any moment, the objects which were sent out of the system by rules of R
are also sent out of µ′ by the rules of R′. Consequently, the two systems Π and
Π ′ are equivalent. ut

In the construction above, except for the new skin membrane, that with the
label s, the membrane structure remains the same (only the labels are changed
during computations).

4.2 Universality Consequences

From Theorem 1 (Theorem 7.2.1 in [9]) we know that systems with rules of types
(a), (b), (c) are Turing complete. The proof from [9] (recalled there from [5]) uses
only three membranes, arranged in two levels – hence from this point of view the
premises of both lemmas from the previous section are satisfied. Unfortunately,
that proof changes the polarization of the skin membrane.

A close examination of the proof shows, however, that this change is done
only once, in the end of the computation. More precisely, one starts from a
matrix grammar G with appearance checking in the binary normal form. The
terminal matrix (X → λ,A → x) of the grammar is replaced by a matrix of
the form (X → f,A → x), where f is a new symbol. The idea is that when the
symbol f is introduced (actually, it is introduced as f ′), the derivation G should
be terminal, hence no further rule of it should be simulated in the constructed
P system. To this aim, f ′ is sent out of the system, changing the polarization
of the skin membrane from 0 to +. If the derivation in G was not terminal,
then in the positively polarized skin, each nonterminal A of G evolves by a rule
A → #, thus preventing the halting of the computation (we also have there the
rule # → #).

This control of the correct termination of the simulation can be achieved
without changing the polarization of the skin membrane, by introducing one
additional membrane, with label 4, at the same level with membranes 2 and 3,
removing the rules which change the polarization of the skin or use its positive
polarization, and considering the following new rules:

f ′[]04 → [f ′]+4 ,

A[]+4 → [#]+4 , for all nonterminals A of G,
[# → #]+4 .

16

The role of (the positive polarization of) the skin is played now by (the positive
polarization of) membrane 4. In this way we get a system which is of type D2S0,
hence we can conclude:

Theorem 3. PsOP (a0, b0, c0, e
′
0) = PsOP (a0, b0, c

′
0) = PsRE.

The equalities follow from Lemmas 1, 2, from the previous change of the
proof of Theorem 1, and from the observation that in the proof of Lemma 1 we
use rules of type (d0) only for simulating rules of type (d), while in the proof of
Lemma 2 we use rules of types (d0), (e0) only in the simulation of rules of types
(d), (e), respectively.

4.3 Direct Universalities

Because we do not have a simulation lemma also for the case of using rules of
type (b′0) for changing the labels of membranes, the universality does not follow
for this case as for the other cases, and that is why we look for a direct proof
of universality. Rather instructively, the proof is much simpler than when we
use polarizations but not label changing features, and this is due to a tricky
possibility to use the labels of membranes.

Theorem 4. PsOP (a0, b
′
0, c0) = PsRE.

Proof. Consider a matrix grammar G = (N, T, S,M,F) with appearance check-
ing, in the binary normal form, hence with N = N1 ∪ N2 ∪ {S, #} and with
the matrices of the four forms introduced in Section 3. Assume that all matrices
are injectively labeled with elements of a set B. Replace the rule X → λ from
matrices of type 4 by X → f , where f is a new symbol.

We construct the P system of degree 2

Π = (O, H, [[]Xinit
]1, w1 = cAinit, wXinit = λ,R),

O = T ∪N2 ∪ {Am | A ∈ N2,m ∈ B} ∪ {c, c′, c′′, c1, c2, c3, c4, c5,#},
H = N1 ∪ {Xm | X ∈ N1,m ∈ B} ∪ {1, f},

and the set R containing the following rules. We present them in blocks as used
for simulating matrices of G, thus also having clear the way the system Π works.

The simulation of a matrix m : (X → Y, A → x), with X ∈ N1, Y ∈ N1∪{f},
is done in three steps, using the next rules:

1. A[]X → [Am]Ym
,

[c → c′]1,
2. [Am]Ym

→ []Ym
Am,

[c′ → c′′]1,
3. [Am → xc]1,

c′′[]Ym
→ [c′′]Y .

17

The first rule of the matrix is simulated by the change of the label of the inner
membrane, and the correctness of this operation is obvious (one cannot simulate
one rule of the matrix without simulating at the same time also the other rule).

The simulation of a matrix m : (X → Y, A → #), with X, Y ∈ N1 and
A ∈ N2, is done in five steps, using the next rules:

4. c[]X → [c1]Ym
,

5. [c1 → c2]Ym
,

A[]Ym
→ [#]f ,

6. [c2]Ym
→ []Ym

c3,
7. [c3 → c4c5]1,
8. [c4 → c]1,

c5[]Ym
→ [c′′]Y .

While the membrane with label X is used by object c, no other rule can be used.
In the next step, if any copy of A is present, then it introduces the trap-object #
and the computation never stops. If no A is present, then the objects cj evolve,
returning the label of the membrane to Y and introducing the auxiliary object
c, for iterating the procedure.

We also consider the following rules:

9. A[]f → [#]f , for all A ∈ N2,
10. [# → #]f ,

11. [a]1 → []1a, for all a ∈ T .

The equality ΨT (L(G)) = Ps(Π) easily follows from the above explanations. ut

A similarly easy direct proof of universality can be given for systems using
rules of the types (a0), (b0), (c′0). We leave this task to the reader, and we give
here the direct universality proof for the case of using rules of type (e′0): this
time the surprise is twofold – not only the construction is trivial, but also only
rules of types (a0), (c0), and (e′0) are used, thus improving the first equality from
Theorem 3.

Theorem 5. PsOP (a0, c0, e
′
0) = PsRE.

Proof. Consider again a matrix grammar G = (N, T, S,M, F) with appearance
checking, in the binary normal form, with the notations and the assumptions
from the previous proof, and construct the P system of degree 2

Π = (O, H, [[]Xinit
]1, w1 = λ,wXinit

= c0Ainit, R),

O = T ∪N2 ∪ {Am | A ∈ N2,m ∈ B} ∪ {c, c′, c0, c1, c2, d, #},
H = N1 ∪ {Xm | X ∈ N1,m ∈ B} ∪ {0, 1, f},

and the set R containing the following rules.
The simulation of a matrix m : (X → Y, A → x), with X ∈ N1, Y ∈ N1∪{f},

is done in three steps, using the next rules:

18

1. [A]X → [Am]Ym
[d]0,

2. [Am → xc]Ym
,

3. [c]
Ym

→ [c′]
Y

[d]
0
.

Again the first rule of the matrix is simulated by the change of the label of the
inner membrane (the “dummy” object d and membrane 0 play no further role).

The simulation of a matrix m : (X → Y, A → #), with X, Y ∈ N1 and
A ∈ N2, is done also in three steps, using the next rules:

4. [c0]X → [c1]Ym
[d]0,

5. [c1 → c2]Ym
,

[A → #]Ym
,

6. [c2]Ym
→ [c0]Y [d]0.

While the membrane with label X is used by object c0, no other rule can be used.
In the next step, if any copy of A is present, then it introduces the trap-object #
and the computation never stops. If no A is present, then the objects cj evolve,
returning the label of the membrane to Y and introducing the auxiliary object
c0, for iterating the procedure.

We also consider the following rules:

7. [A → #]f , for all A ∈ N2,
8. [# → #]h, for all h ∈ H,
9. [a]f → []fa,

10. [a]1 → []1a, for all a ∈ T .

The equality ΨT (L(G)) = Ps(Π) is again obvious. ut

Remark 1. In the above proof, the rules of type (c0) are only used for sending
the result of a computation out of the system. Therefore, rules of types (a0)
and (e′0) are sufficient to reach universality for membrane systems with internal
output.

4.4 Efficiency

As we have noticed above, the proofs of Lemmas 1, 2 do not preserve the de-
terminism of the simulated systems; more precisely, the constructed systems do
not always halt, but any “wrong” step with respect to the starting system will
lead to an endless computation. Such a behavior is not accepted in solving decid-
ability problems with P systems, neither in the deterministic manner from [11],
nor in the slightly more relaxed framework of [9], where the nondeterminism is
allowed, providing that the system is confluent (all branches of a computation
eventually reach a unique configuration), and always halts.

However, as somewhat expected, P systems without polarization, but with
the possibility of changing the label of membranes (by means of rules of types
(c′0) and (e′0)) can solve NP-complete problems in linear time. This is illustrated
below, with direct proofs, for SAT, the typical problem used in such cases.

19

Before giving these proofs, it is worth noticing that rules of types (a0), (e0)
suffice in order to generate all 2n truth assignments for n variables from a propo-
sitional formula. Specifically, let us consider a (non-skin) membrane []0 where
we have the objects d1 and a1, and also consider the following rules:

G1 [di → ai+1di+1]0, 1 ≤ i < n,
G2 [ai]0 → [ti,i]0[fi,i]0, 1 ≤ i ≤ n,
G3 [ti,j → ti,j+1]0,

[fi,j → fi,j+1]0, 1 ≤ i ≤ j < n.

In each step, one “expands” one variable, starting with x1 and ending with
xn, deterministically. The truth values ti,j , fi,j of variables xi have associated
second subscripts j specifying the step, so that, in n steps the membrane [d1a1]0
is divided in 2n membranes, each of them containing a multiset of the form
dnv1v2 · · · vn, where vi ∈ {ti,n, fi,n}.

In a way which will be used in the proof of the Theorem 9, by using the rules
of types (a0), (e0) only, during the generation of truth assignments we can also
check which clauses are satisfied by the truth assignments – we skip the details
here.

Unfortunately, we do not see any way to check the truth value of the whole
formula for these truth assignments by using only rules (a0), (b0), (c0), (d0), (e0),
and that is why we use below also rules for changing the labels.

A rigorous framework for dealing with complexity matters in our area is that
of recognizing P systems, which we introduce here following [10]. First, let us
consider P systems with input, which will allow the input of a multiset encoding
a decision problem, in a special membrane. Such a device is a tuple (Π, V, i0),
where:

– Π is a usual P system, with the alphabet of objects O and initial multisets
w1, · · · , wm (associated with membranes labelled by 1, · · · ,m, respectively).

– V is an (input) alphabet strictly contained in O and such that w1, · · · , wm

are multisets over O − V .
– i0 ∈ {1, 2, . . . , m} is the label of a distinguished membrane (of input).

If w is a multiset over V , then the initial configuration of (Π, V, i0) with input
w is (µ,w′1, · · · , w′m), where w′i = wi for i 6= i0, and w′i0 = wi0 ∪ w.

The computations of a P system with input are defined in a natural way,
the only change is that the initial configuration is obtained by adding the input
multiset w over V to the initial configuration of the system Π.

Then, a recognizing P system is a P system with input, (Π, V, i0), such that:

1. The alphabet O of Π contains two distinguished elements yes, no.
2. All computations of the system halt.
3. If C is a computation of Π, then either the object yes or the object no (but

not both) is sent out to the environment, and only in the last step of the
computation.

20

We say that C is an accepting (respectively, rejecting) computation if the
object yes (respectively, no) appears in the environment in the halting configu-
ration of C.

Given a decision question X, we say that it can be solved in polynomial
(linear) time by recognizing P systems (with active membranes in our case) if,
informally speaking, we can construct in polynomial time a family of recognizing
P systems (Π, V, i0)n, n ∈ N, associated with the sizes n of instances X(n) of the
problem, such that, after introducing an encoding of X(n) via an input multiset,
the system will always stop in a polynomial (linear, respectively) number of steps,
sending out the object yes if the instance X(n) has a positive answer and the
object no if the instance X(n) has a negative answer.

Note that always we have an answer, one of yes and no, but we have said
nothing about the way the computations evolve, the only restriction we impose is
that all of them halt (in a number of steps bounded by a known function). That
is why we say that such systems are confluent (they may be non-deterministic,
but the answer is obtained in a finite time irrespective of the possible branchings
of the computations). The deterministic systems, where no branching is possible,
are a particular case of confluent systems.

With these prerequisites, we now pass to giving the announced efficiency
results.

Theorem 6. P systems with rules of types (a0), (b0), (c0), (e′0) can solve SAT in
linear time in a confluent way.

Proof. Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β (to which the size (m,n) is associated) is encoded as a multiset
over

V (〈n,m〉) = {xi,j , x
′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The object xi,j represents the variable xj appearing in the clause Ci without
negation, and object x′i,j represents the variable xj appearing in the clause Ci

with negation. Thus, the input multiset is

w = {xi,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {x′i,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

For given (n,m) ∈ N2, we construct a recognizing P system (Π(〈n,m〉), V (〈n,m〉),
2) with:

Π(〈n,m〉) = (O(〈n,m〉),H, µ, w1, w2, w7, R),
O(〈n,m〉) = {xi,j , x

′
i,j | 1 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {di | 0 ≤ i ≤ 2n + 2m + 5}

∪ {ci | 1 ≤ i ≤ m} ∪ {e, f0, f1, yes, no},

21

µ = [[]2[]7]1,
w1 = λ, w2 = w7 = d0,

H = {1, 2, 3, 4, 5, 6, 7},

and the following rules (we also give explanations about the use of these rules):

Generation phase
G1 [di]2 → [di]3[di]4, 0 ≤ i < n,
G2 [di] l → [di+1]2[d0]1, l ∈ {3, 4}, 0 ≤ i < n,
G3 [dn]2 → [d0]5[d0]1.

In 2n + 1 steps, 2n membranes with label 5 are created, corresponding to the
truth assignments of the variables x1, · · · , xn. During this process, the object di

inside the membrane with label 3 corresponds to the true value of variable xi+1,
and the object di inside the membrane with label 4 corresponds to the false value
of variable xi+1. The created membranes with label 1 are dummy membranes:
no rule associated with them is applied; this allows us to change the membrane
labels during the computation.

G4 [xi,j → xi,j−1]2,
[x′i,j → x′i,j−1]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

G5 [xi,0 → ci]3,
[xi,0 → λ]4, 1 ≤ i ≤ m,

G6 [x′i,0 → λ]3,
[x′i,0 → ci]4, 1 ≤ i ≤ m.

The labels of the created membranes toggles between 2 at even steps and 3 or 4
at odd steps. Every object xi,j of the input evolves to xi,0 in 2j− 1 steps. Then,
it evolves to ci in membranes where true value was chosen for xj (recall that
xi,j = true satisfies clause Ci) and is erased in membranes where false value was
chosen for xj . Similarly, x′i,j changes to ci if xj = false and is erased if xj = true.
After 2n + 1 steps, the membranes with label 5 will represent all possible truth
assignments of the variables in β. Every such membrane will contain d0 and the
objects representing the clauses satisfied by the present truth assignment.

Checking phase
C1 [c1]5 → [c0]6[d0]1,
C2 [ci → ci−1]6, 1 ≤ i ≤ m,
C3 [di]6 → [di+1]5[d0]1, 0 ≤ i < m,

[c0 → λ]5,
C4 [dm → ef0]5.

A membrane with label 5 where object c1 appears will change the label to 6
(recall that no rule is ever applied in membranes with label 1 created by division).
In a membrane with label 6, the subscripts of all objects cj are decremented by
one, and at the same time the subscript of di is incremented by one and the
label of membrane changes back to 5.

22

If in the beginning of the checking phase c1, · · · , ci are present (0 ≤ i < m−1),
but ci+1 is absent, then the evolution of the membrane finishes after 2i steps with
label 5, with di and without c1. If all objects ci, 1 ≤ i ≤ m, are present in the
beginning of the checking phase, then after 2m steps they will all be rewritten
into c0, and d0 will evolve into dm (and into ef0 in one more step).

C5 [e]5 → []5e,
[f0 → f1]5,

C6 e[]
7
→ [e]

7
,

[f1]5 → [d2m+2n+4]6[d0]1,
C7 e[]6 → [e]6.

If β has solutions (suppose β has s solutions, 1 ≤ s ≤ 2n), then at step 2n +
2m + 3, every membrane corresponding to a solution of β ejects e in the skin
region, and at the same time f0 changes to f1. At step 2n + 2m + 4, one copy of
e enters the membrane with label 7, and s membranes change label from 5 to 6
by rule [f1]5 → [e]6[d0]1. At step 2n + 2m + 5, s− 1 copies of e enter in s− 1
membranes of the s + 1 membranes with labels 6 and 7. If β has no solution,
then no object e enters membrane labeled 7.

Output phase
O1 [di → di+1]7, 0 ≤ i ≤ 2m + 2n + 4,
O2 [e]7 → [yes]6[d0]1,
O3 [yes]6 → []6yes,
O4 [yes]1 → []1yes,
O5 [di → λ]6, i ∈ {2n + 2m + 4, 2n + 2m + 5}
O6 [d2n+2m+5]7 → []7no,
O7 [no]1 → []1no.

If β has solutions, then at step 2n+2m+4 the membrane with label 7 receives a
copy of e by rule C6. In this case, rule O2 will be applied either at step 2n+2m+4
or at step 2n + 2m + 5 (this can happen if s > 1 and rule C6 is applied at step
2n + 2m + 4), changing the label of the membrane from 7 to 6. It will take two
more steps to eject object yes in the skin and then into the environment. If β
has no solutions, then after step 2n+2m+5 the membrane with label 7 remains
with label 7 and then rule O6 is applied, ejecting object no into the skin and
then into the environment. ut

If β has at least two solutions, then the behavior of this system is not deter-
ministic: in step 2n+2m+4 either one of the rules C6 and O2 can be applied to
the membrane with label 7 (applying C6 in step 2n+2m+4 results in one extra
copy of e in membrane with label 7 and one copy of e missing in some membrane
with label 6). However, the system is confluent: in either case mentioned above,
after at most three further steps, the system produces the output yes and halts
in the same configuration (the membrane with label 7 changes its label to 6 and
the counter d2n+2m+4 or d2n+2m+5 is erased). From this point of view, using
rules of type (c′0) allows to obtain a stronger result:

23

Theorem 7. P systems with rules of types (a0), (c′0), (e0) can solve SAT in linear
time in a deterministic way.

Proof. Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β is encoded as a multiset w over Σ(〈n,m〉) in the same way as in
the previous proof. For given (n,m) ∈ N2, we construct a recognizing P system
(Π(〈n,m〉), V (〈n,m〉), 2), with

Π(〈n,m〉) = (O(〈n,m〉),H, µ, w1, w2, R),
O(〈n,m〉) = Σ(〈n,m〉) ∪ {di | 0 ≤ i ≤ 4n + 2m + 4} ∪ {ei | 0 ≤ i < n}

∪ {ci | 1 ≤ i ≤ m} ∪ {a, t, f, u, v, yes, no},
µ = [[]2]1,

w1 = w2 = d0,

H = {1, 2, 3, 4, 5, 6, 7},

and the following rules (we also explain the construction here):

Generation phase
G1 [di → eiau]2, 0 ≤ i < n,
G2 [a]2 → [t]2[f]2,
G3 [t]2 → []3a,

[f]2 → []4a,
G4 [ei → di+1] l, l ∈ {3, 4}, 0 ≤ i < n,
G5 [u] l → []2a, l ∈ {3, 4}.

In 4n steps, 2n membranes are created, corresponding to the truth assignments
of the variables x1, · · · , xn. During this process, object di inside the membrane
with label 3 corresponds to the true value of variable xi+1, and object di inside
the membrane with label 4 corresponds to the false value of variable xi+1. Object
a is used to choose the truth assignment of variables, and object u is used to
change the membrane label back to 2.

G6 [xi,j → xi,j−1] l,
[x′i,j → x′i,j−1] l, 1 ≤ i ≤ m, 1 < j ≤ n, l ∈ {3, 4},

G7 [xi,1 → ci]3,
[xi,1 → λ]4, 1 ≤ i ≤ m,

G8 [x′i,1 → λ]3,
[x′i,1 → ci]4, 1 ≤ i ≤ m.

The label of the created membranes is 2 and then changes to 3 or 4 at steps
4i + 3, 0 ≤ i < n. Every object xi,j of the input evolves to xi,1 in 4(i − 1)

24

steps. Then, it evolves to ci in membranes where true value was chosen for xj

(recall that xi,j = true satisfies clause Ci) and is erased in membranes where
false value was chosen for xj . Similarly, x′i,j changes to ci if xj = false, and is
erased if xj = true.

G9 [dn → dn+1v]2,
G10 [v]2 → []5a,

[dn+1 → d0u]2.

After step 4n + 2, the membranes with label 5 will represent all possible truth
assignments of the variables in β. Every such membrane will contain d0, u, and
the objects representing the clauses satisfied.

Checking phase
C1 [ci → ci−1]5, 1 ≤ i ≤ m,
C2 [u]5 → []6a,
C3 [c0]6 → []5a,
C4 [di → di+1u]6, 0 ≤ i < m− 1,
C5 [dm−1 → dm]

6
.

By expelling object u, membrane changes label from 5 to 6. At the same time
the subscripts of all objects cj are decremented by one. A membrane with label
6 where object c0 appears will change the label back to 5. At the same time the
subscript of di is incremented by one and u is reproduced (except for i = m−1).

If in the beginning of the checking phase c1, · · · , ci are present (1 ≤ i < m),
but ci+1 is absent, then after 2i + 1 steps rule C3 will no longer be applicable
and the membrane will have label 6, no object c0 and will never change the
label again. After m + i + 1 steps from the beginning of the checking phase the
membrane will stop evolving. If all objects ci, 1 ≤ i ≤ m, are present in the
beginning of the checking phase, then after 2m steps they will all be erased, d0

will evolve into dm and the membrane label will be 5.

Output phase
O1 [dm]5 → []5yes,
O2 [yes]1 → []7yes,
O3 [di → di+1]1, 0 ≤ i ≤ 4n + 2m + 3,
O4 [d4n+2m+4]1 → []

1
no.

At step 4n + 2m + 3, every membrane corresponding to a solution of β expels
yes in the skin region, and in the next step one copy of yes (if any) is ejected
into the environment, changing the label of the skin from 1 to 7. If β has no
solutions, then after step 4n + 2m + 4 the skin membrane remains with label 1
and then rule O4 is applied, ejecting the object no into the environment. ut

4.5 Parallel Communication

In P systems with active membranes, the evolution rules (those of type (a)) are
typically considered as only using objects, while the communication, dissolution

25

and division rules as using both objects and rules, and hence cannot be applied in
parallel, because a conflict could appear as a result of a simultaneous application
of rules changing membrane polarizations (or labels) in a different way.

However, if we forbid the communication operations to change labels (type
(b0) or (c0)), then we could regard them as not using membranes and apply
them in parallel, like the evolution rules, as is done, for instance, in the sym-
port/antiport P systems in [7] and in P systems with boundary rules in [2].

Consider rules of the following types (subscript p means parallel application):

(b0p) a[]h → [b]h, where a, b ∈ O and h ∈ H,
(c0p) [a]h → []hb, where a, b ∈ O and h ∈ H.

P systems with membrane division with changing labels, and with parallel ap-
plication of both evolution rules and communication rules of type (b0) turn out
to be able to solve SAT in linear time in a deterministic way (thus improving
from this point of view the result in Theorem 6. The universality of systems
with parallel communication remains as an open question.

Theorem 8. P systems with rules of types (a0), (b0p), (c0), (e′0) can solve SAT
in linear time in a deterministic way.

Proof. Following the generation phase and rules C1–C3 in Theorem 6, we replace
the remaining part of the construction with:

C4 [dm]5 → []5e,
C5 e[]7 → [e]7.

At step 2n + 2m + 2, every membrane corresponding to a solution of β ejects e
in the skin. At step 2n + 2m + 3, all objects e move in parallel into a membrane
with label 7.

C6 [e]7 → [yes]1[d0]1,
C7 [yes]1 → []1yes,
C8 [di → di+1]7, 0 ≤ i ≤ 2n + 2m + 3,
C9 [d2n+2m+4]7 → []

7
no,

[no]1 → []1no.

If β has a solution, then we replace one copy of e with yes, changing the label
from 7 to 1, send yes out of that membrane and then eject it in the environment.
Otherwise, after step 2n+2m+4 the membrane with label 7 will not change its
label, so no will be sent out of it and then ejected in the environment. ut

Remark 2. In Theorem 7, no rules of type (b0) were used, so its statement re-
mains valid also for parallel communication “in” (rules of type (b0p)).

26

5 Solving SAT Without Polarizations and Without
Changing Labels

In the brute-force algorithms as those in Section 4.4, the first phase produces all
2n truth assignments for the n variables used and the list of clauses satisfied. As
we have noticed at the beginning of Section 4.4, this can be done without using
polarizations and without using the label changing possibilities. Actually, rules
of types (a0) and (e0) suffice.

The second phase is to check whether there exists a membrane containing a
given set of symbols. If the second phase started from a special membrane struc-
ture (of a form we will see below: with each truth assignment separately enclosed
in m membranes embedded in each other, corresponding to the m clauses of a
formula – see Fig. 1 for a pictorial representation), then one could solve the
problem without polarizations and without changing labels, moreover, only us-
ing rules of types (a0), (c0), and (d0). So, the problem remains to produce the
membrane structure of this “special” form – and this can be achieved by us-
ing non-elementary membrane division rules without polarizations and without
changing the labels of membranes.

The rules we are using will be of the form

(f0) [[] i[] j]k → [[] i]k[[] j]k, where i, j, k are labels.

The meaning of such a rule is that if two membranes with labels i, j are
placed inside a membrane with label k, then the membrane k is divided so that
one of the new membranes k contains membrane i and the other one contains
membrane j; all membranes and objects placed inside membranes i and j, as well
as all membranes and objects from membrane k placed outside membranes i and
j, are reproduced in the new copies of membrane k. As usual, the membranes
different from i, j, k (those not involved in this rule) evolve in the standard non-
deterministic maximally parallel manner.

Rules for dividing non-elementary membranes are already known to be very
powerful – illustration can be found in, e.g., [1, 14]. As we will see immediately,
they are powerful even in the restricted case where no polarization is used and
the labels of membranes are not changed.

However, the solution we give to SAT in this framework is semi-uniform in
the sense that the P system we construct starts from a given instance of the
problem (not from the size of the instance, as in the uniform case); however,
the construction takes a polynomial time, hence it is “honest” from this point
of view.

Theorem 9. P systems with rules of types (a0), (c0), (d0), (e0), (f0), constructed
in a semi-uniform manner, can solve SAT in linear time in a deterministic way.

Proof. Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

27

The instance β of SAT will be encoded in the rules of the P system by multisets
vj and v′j of symbols, corresponding to the clauses satisfied by true and false
assignment of xj , respectively:

vj = {ci | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n,

v′j = {ci | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n.

We construct the P system

Π = (O, H, µ, w0, · · · , wm+3, R), with
O = {di | 0 ≤ i ≤ 2n + 2m + 2} ∪ {ai, ti, fi | 1 ≤ i ≤ n}
∪ {ci | 0 ≤ i ≤ m} ∪ {yes, no},

µ = [[· · · [[]0]1 · · ·]m+2]m+3,

w0 = wm+1 = d0,

wi = λ, i /∈ {0,m + 1},
H = {0, · · · ,m + 3},

and the following rules (we accompany them with explanations about their use):

Generation phase
G1 [d2i → ai+1d2i+1]0, for all 0 ≤ i < n, and

[d2i−1 → d2i]0, for all 1 ≤ i ≤ n,
[d2n+i → d2n+i+1]0, 0 ≤ i < m.

We count to 2n + m, which is the time needed for producing all 2n truth as-
signments for the n variables, as well as membrane sub-structures which will
examine the truth value of formula β for each of these truth assignments; this
counting is done in the central membrane; moreover during the first n odd steps,
symbols a1, · · · , an are subsequently produced.

G2 [ai]0 → [ti]0[fi]0, 1 ≤ i ≤ n.

In membrane 0, we subsequently choose each variable xi, 1 ≤ i ≤ n, and both
values true and false are associated with it, in form of objects ti and fi, which
are separated in two membranes with label 0. The division of membrane 0 is
triggered by the objects ai, which are introduced by the first rule from group
G1 in odd steps; this is important in interleaving the use of these rules (hence
the division of membrane 0) with the use of the rules of group G4, for dividing
membranes placed above membrane 0.

G3 [ti → vi]0,
[fi → v′i]0, 0 ≤ i < n.

In membrane 0, we subsequently look for the clauses satisfied by the truth as-
signments of each variable xi, 1 ≤ i ≤ n. After 2n + m steps, if there is at least
one membrane with label 0 which contains all the symbols c1, · · · , cm, this means
that the truth assignment from that membrane satisfies all clauses, hence it sat-
isfies formula β. Otherwise (if in no membrane with label 0 we get all objects
c1, c2, . . . , cm), the formula β is not satisfiable.

28

G4 [[] i[] i] i+1 → [[] i] i+1[[] i] i+1, 0 ≤ i < m.

These are division rules for membranes with label 0, 1, · · · ,m, to be used for
the central membrane 0 in steps which alternate with the use of the first rule
of type G1. The division of a membrane with label 1 is then propagated from
lower levels to upper levels of the membrane structure and the membranes are
continuously divided until also membrane with label m has been divided. In the
following cycle of the division process, the same holds, resulting in the structure
as shown in Fig. 1 after 2n + m steps.

G5 [d2n+m]
0
→ c0.

After 2n + m steps, each copy of membrane with label 0 is dissolved and the
contents is released into the surrounding membrane, which is labeled with 1.

Checking phase
C1 [ci] i

→ ci, 1 ≤ i ≤ m,

A membrane with label j, 1 ≤ j ≤ m, is dissolved if and only if cj appears in it
(i.e., clause Cj is satisfied by the current truth assignment); if this is the case, the
truth assignment associated with the membrane is released in the surrounding
membrane. Otherwise, the truth assignment remains blocked in membrane j and
never used at the next steps by the membranes placed above.

C2 [c0]m+1 → c0.

The fact the object c0 appears in the membrane with the label m + 1 means
that there is a truth assignment which satisfies the formula β. In this case, the
membrane with label m + 1 is dissolved and the contents are released into the
membrane with label m + 2. Otherwise, the formula is not satisfiable, and the
membrane with label m + 1 will not dissolve.

C3 [di → di+1]m+1, 0 ≤ i ≤ 2n + 2m + 1.

At the same time as the membrane with label m + 1 is dissolved (at step 2n +
2m + 1), the object d2n+2m+1 evolves to d2n+2m+2, and then released to the
membrane with label m + 2.

Output phase
O1 [d2n+2m+2]m+2 → yes.
O2 [a]m+3 → []m+3a, a ∈ {yes, no}.

In the next two steps, the object yes is produced, and then send out to the
environment.

O3 [d2n+2m+2]m+1 → no.
O4 [no]m+2 → no.

29

If the formula is not satisfiable, then the object d2n+2m+1 remains in the mem-
brane with label m + 1, which produces the object no, ejecting it into the mem-
brane with label m + 2, then into the membrane with label m + 3, finally into
the environment.

Therefore, in 2n + 2m + 3 the system halts and sends into the environment
one of the objects yes, no, indicating whether or not the formula β is satisfiable.

It is easy to see that the system Π can be constructed in a polynomial time
starting from β and this concludes the proof. ut
Remark 3. Rules of type (c0) are only needed to output the result in the envi-
ronment, so this type can be omitted if we consider internal output: exactly one
of objects yes and no will be introduced in the skin membrane in the last step
of the computation.

s

s

s

s s

s s

s s

s s

m+3

m+2

m+1

m

m-1

1

0

m

m-1

1

0

· · ·

· · ·

...
...

%
%

%
%%

e
e

e
ee

¤
¤
¤
¤¤s

s

s

s

m

m-1

1

0

...

︸ ︷︷ ︸
2n

Fig. 1. The membrane structure of the system Π after 2n + m steps.

6 Final Remarks

With the goal of removing the polarization from P systems with active mem-
branes, we have investigated the possibility to allow instead to change the labels
of membranes, and we were successful in the case of rules for sending objects
out of a membrane (of type (c)) and in the case of rules for dividing membranes
(of type (e)) – losing however the determinism. The case of using rules of type
(b) (introducing objects into membranes) for changing the labels has remained
open in what concerns the simulation results – as well as the possibility to solve
SAT in polynomial time – but not in what concerns the universality.

30

The use of non-polarized membranes suggests further possibilities in what
concerns the application of rules. For instance, as already mentioned in Section
4.5, one of the reasons to use the rules of types (b), (c) in a sequential way
was the polarization change (using several rules at the same time could lead to
polarization conflicts). The same reason prevents using rules of types (b′0), (c

′
0)

in a parallel manner. When no polarizations are present and no label is changed,
these difficulties do not appear, hence we can use also rules of types (b0), (c0)
in parallel: all objects which can enter or exit a membrane have to do it at the
same time, in the maximally parallel manner.

On the other hand, we can allow also rules of type (a) to change the polar-
ization or the label of the membrane – and then such a rule should be applied in
a sequential manner, not to lead to label conflicts. We write such a rule in the
form [a]e1

h → [v]e2
h , or [a]h1

→ [v]h2
.

In total, we get three criteria to classify the rules: changing or not polar-
izations, changing or not labels of membranes, using the rules in parallel or
sequentially. On the other hand, we have rules of five forms (six, if we also con-
sider rules for dividing non-elementary membranes), each one being of several
possible types with respect to the previous classification. A lot of classes of P
systems are obtained by combining these possibilities, a small “jungle” which
is worth exploring, looking for results of three types: simulation lemmas among
different classes of P systems, universality results (as a consequence of possible
simulation lemmas or directly proven), efficiency results. We hope to return to
this topic in a forthcoming paper.

Acknowledgements. The first author was supported by grant 2001CAJAL-
BURV4 from Rovira i Virgili University, and the second author by grant DGU-
SB2001-0092 from Spanish Ministry for Education, Culture, and Sport, National
Natural Science Foundation of China (Grant No. 60103021), and Huazhong Uni-
versity of Science and Technology Foundation.

References

1. A. Alhazov, C. Mart́ın-Vide, L. Pan, Solving a PSPACE-Complete Problem by P
Systems with Restricted Active Membranes, Fundamenta Informaticae, to appear.

2. F. Bernardini, V. Manca, P Systems with Boundary Rules, Membrane Computing.
Proc. WMC Curtea de Argeş, 2002 (Gh. Păun, G. Rozenberg, A. Salomaa, C.
Zandron, eds.), LNCS 2597, Springer-Verlag, 2003, 107–118.

3. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

4. D. Hauschild, M. Jantzen, Petri Nets Algorithms in the Theory of Matrix Gram-
mars, Acta Informatica, 31 (1994), 719–728.

5. M. Madhu, K. Krithivasan, Improved Results About the Universality of P Systems,
Bulletin of the EATCS, 76 (February 2002), 162–168.

6. Ch.P. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA,
1994.

7. A. Păun, Gh. Păun, The Power of Communication: P Systems with Sym-
port/Antiport, New Generation Computers, 20, 3 (2002), 295–306.

31

8. Gh. Păun, P Systems with Active Membranes: Attacking NP-Complete Problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

9. Gh. Păun, Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

10. M.J. Pérez Jiménez, A. Romero Jiménez, F. Sancho Caparrini, The Polynomial
Complexity Class with Active Membranes, submitted, 2003.

11. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de la Com-
plejidad en Modelos de Computatión Celular con Membranas, Editorial Kronos,
Sevilla, 2002.

12. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages (3 volumes).
Springer, Berlin, 1997.

13. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
14. P. Sośık, Solving a PSPACE-Complete Problem by P Systems with Active Mem-

branes, Proceedings of the Brainstorming Week on Membrane Computing (M. Cav-
aliere, C. Mart́ın-Vide, and Gh. Păun, eds.), Report GRLMC 26/03, 2003, 305–312.

32

